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Sodium-ion batteries (SIBs) with iron- and manganese-based cathode electrodes have exhibited great promise in
the grid-scale energy storage systems, on the basis of the satisfactory theoretical capacity, as well as huge
abundance, low price and non-toxicity of raw materials. However, the inferior cycle life of cathode materials
originating from their poor structural stability remains a formidable challenge towards practical applications.
Here, an efficient strategy of improving the structure durability is demonstrated in iron- and manganese-based
cathodes by dual heteroatom doping. The as-obtained P2-type NaggsLig 0gCuo.osFeo.24Mng Oz cathode de-
livers superior cyclability (88.2% capacity retention for 500 cycles at 2C), fabulous rate capability (76% capacity
retention at 5C compared to 0.1C), and a useable reversible capacity of around 85 mAh g~! at 0.1C. Through in-
depth characterizations, the underlying structure-property relationship is established, revealing that the com-
plete solid-solution reaction during cycling ensures the ultralow volume variation (as small as 0.7%) and
excellent electrochemical performance. These results highlight the significance of fabricating a stable host for the
design and development of advanced SIBs with long life.

1. Introduction candidates for several advantages in terms of their facile synthesis and

2D Na* diffusion pathway [4].

Owing to the ever-growing demands for environmentally-benign
energy solutions, research and development of large-scale electrical
energy storage systems (EESs) for the integration of intermittent
renewable energy sources, such as solar, wind and geothermal, is
becoming increasingly imperative [1,2]. In this regard, rechargeable
sodium-ion battery (SIB) is considered as one of the most attractive
options for grid-scale EESs and an alternative to lithium-ion batteries
due to the highly abundant and wide distribution of sodium resources
compared to lithium [3]. Among the various cathode materials for SIBs,
the layered transition-metal oxides (NayTMOg, 0 < x < 1, TM=Ni, Co,
Mn, Fe, V, etc.) have been regarded as one of the most promising
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In general, Na,TMO; can be classified into two major groups ac-
cording to the oxygen stacking sequence and local environment of Na™,
namely P2-type (P: prismatic) and O3-type (O: octahedral) [5]. P2-phase
oxides normally exhibit fewer phase transitions and better rate capa-
bility in comparison with the corresponding O3-type counterpart on
account of their larger prismatic sites and direct diffusion pathways for
Na® [6]. As a consequence, P2-Nay sFe;,oMn; 20, possesses a much
more remarkable electrochemical performance than
03-NaFe; 2Mn; 20,, delivering a high capacity of 190 mAh~g’1 within
the voltage of 1.5-4.3 V [7]. It is also worth noting that both iron and
manganese elements are extremely abundant in the earth’s crust among
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all the 3d transition metals [8]. The P2 Na-Fe-Mn-O cathodes obviously
demonstrate great potential as commercialized cathodes for SIBs in view
of their satisfactory theoretical capacity, low cost in raw materials and
environmental benignity [8-11]. However, the practical application of
these P2-type Fe- and Mn- based oxides is seriously hindered by their
insufficient structural stability during cycling, which is ascribed to the
formation of unfavorable P2-Z phase transition at a high-voltage region
and the destabilization of the crystal structure associated with
Jahn-Teller distortion of Mn®* upon Na* (de)intercalation [12-14]. In
addition, P2-type NayFe; yMnyO, materials are hygroscopic, thus
resulting in a shorter lifetime and added cost for storage and trans-
portation [15].

To alleviate the aforementioned issues faced by P2-NayFe; yMnyOo,
tremendous efforts have been exerted in previous studies, such as het-
eroatom doping [8,11], surface engineering [16] and nanoscale design
[17]. Noticeably, doping various metallic cations (inactive ions: Li* [18,
19], Mg?* [20], AI®* [21], Ti** [22,23]; active ions: Ni%* [24], Co®*
[25,26], Ccu®t [27,28]) is commonly recognized to be an effective way to
improve their performance. For example, Ni and Co were introduced to
transition metal layers to fabricate the trinary Ni/Fe/Mn- and
Co/Fe/Mn- based oxides respectively, showing an improved perfor-
mance to some extent by relieving the phase transition and structural
distortion [25,29]. Considering the relatively expensive price of Ni and
Co, a Cu-substituted P2-Nay,9Cuy 9Fe; ,0Mny, 302 was synthesized. This
material exhibited a reversible capacity of 89 mAh-g~! at 0.1C and a
complete solid-solution reaction with good capacity retention (85%
after 150 cycles at 1C) [30]. Nonetheless, it is still not competent to
achieve ultra-long-term cycles in P2-type Fe- and Mn- based cathodes. It
should be demonstrated that for grid-scale EESs, low production cost
and superior cycling stability are critically important [31]. Besides, for
P2-type Fe- and Mn- based oxides, impurities are inclined to produce
without suitable compositions and substituents/dopants [32]. There-
fore, it is urgent to explore novel Ni/Co free cathodes with excellent
calendar life and high tolerance toward moisture through a scalable
route.

Herein, Li/Cu co-substitution is proposed to improve the practicality
of P2-NayFe; _yMnyOo, since dual heteroatom doping strategy could not
only combine different merits of dopants but boost the concentration of
heteroatoms in materials [33]. For example, some quaternary, quinary
and even high entropy layered oxide cathodes enabled by doping two or
more metallic elements commonly delivered good energy storage
properties [34-36]. Nevertheless, to the best of our knowledge, the
heteroatom co-doping method has rarely been adopted for the P2-type
Fe- and Mn- based system. Among all of the dopant cations, Li substi-
tution in the TM layer is considered as structure stabilizer because the
monovalent Li* is beneficial to keep more Na™ retain in the deeply
desodiated structure to maintain electrostatic equilibrium [37]. Conse-
quently, suppressed phase transitions (i.e., P2-02, P3-P'3) and smooth
charge-discharge curves were reported in Li-substituted Nay,TMO,
cathodes [38-40]. Meanwhile, the Cu-doped oxides were developed,
including P2—Na0‘67Cu0,33Mno,5702 [41], P2@P3 Na0,78Cu0_272n0‘06
Mng ;02 [42], etc., in which the reversible Cu*'/Cu®* redox is
responsible for the improved working potential and air stability.

Enlighted by the above considerations, a quaternary P2-type
Nag,e5Lio.08Cuo.08Fep.24Mng 602 (NLCFM) was successfully designed for
the first time via Li/Cu co-substitution. As a comparison, the electro-
chemical performance of undoped P2-Nag gsFeg 4Mng 602 (NFM), mono-
doped P2—Nao~65Li0.ogFEO.32Mn0~602 (NLFM) and P2—Nao‘65Cu0‘08,
Feg.32Mng 602 (NCFM) were systematically investigated, and their phase
structures were confirmed by neutron diffraction coupled with X-ray
diffraction. For the P2-NLCFM electrode, in-situ synchrotron high-
energy X-ray diffraction (HEXRD) reveals that the unwanted P2-Z
phase transition has been strongly mitigated during the charge/
discharge process with the unit cell volume variation as small as about
0.7%. As a consequence, outstanding structural stability and greatly
enhanced rate capability were achieved. The Li/Cu co-doping NLCFM
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cathode exhibits a specific capacity of around 85 mAh-g~! at 0.1C be-
tween 2.5 and 4.2 V with a high average voltage of 3.5V and ultra-
stable cycle performance (88.2% capacity retention at 2C after 500 cy-
cles). The ex-situ XRD experiments, high-resolution transmission mi-
croscopy (HRTEM), galvanostatic intermittent titration technique
(GITT) and differential electrochemical mass spectrometry (DEMS) were
further conducted to investigate the linkage between electrochemical
performance and structure durability, and demonstrated the signifi-
cance of a stable host for Na* insertion/extraction.

2. Experimental section
2.1. Materials synthesis

Nag 65Fep.4Mng 02 (NFM), Nag gsLio.osFeo.32Mng 602  (NLFM),
Nag 65Cug,0gFep.32Mng 602 (NCFM) and Nag gsLig.08Clig.08F€0.24Mng 602
(NLCFM) were prepared by a conventional solid-state reaction from the
precursor of NapCO3 (Sinopharm Chemical, 99.8%), Fe;O3 (Aladdin,
99.9%), Li;CO3 (Sinopharm Chemical, 99.99%), CuO (Sinopharm
Chemical, 99%), and Mny03 (98%, Sinopharm Chemical). For
Nag gsFeg.4Mng 02, NayCOs, FeyO3, and MnyO3 were mixed together
with a molar ratio of 0.67:0.4:0.6 (3% excess NapCO3 to compensate for
the volatilization loss at high temperatures) and thoroughly ground by a
ball mill at 400r min~" for 6 h. The resulting mixture was pressed into
pellets under the pressure of 20Mpa. Then, the pellets were calcined at
900 °C for 15h in Os. After cooling down naturally, the sample was
transferred to an Ar-filled glovebox immediately until use. The synthesis
procedure of doped samples, NLCFM, NLFM and NCFM followed the
identical procedure via mixing the relevant oxide in a stoichiometric
ratio.

2.2. Materials characterizations

The composition of the final materials was detected by inductively
coupled plasma-atomic emission spectrometry (ICP-AES, JY2000-2,
HORIBA JOBINYVON). The crystalline structures of the samples were
investigated by both X-ray and neutron diffraction measurements. The
X-ray diffraction (XRD) patterns were collected on a Bruker D8 Discover
diffractometer with Cu Ko radiation of A = 1.5405(6) A within the 20
range of 10-80°. Neutron powder diffraction (NPD) experiments were
performed at room temperature on the High-Pressure Neutron Diffrac-
tometer (HPND) at China Mianyang Research Reactor (CMRR). Room-
temperature data were collected at a wavelength of A = 1.5907(1) A.
Rietveld refinement of the diffraction profiles was carried out using the
FullProf package suite. In addition, the particle morphology and ele-
ments distribution were examined using a scanning electron microscope
(SEM, ZEISS SUPRA-55) with an Energy Dispersive Spectroscopy (EDS,
OXFORD, X-MaxN TSR) and all these cross-section samples were pre-
pared by focused ion beam (FIB, FEI, Scios). High-resolution trans-
mission electron microscopy (HRTEM) images were obtained on a JEOL-
3200FS field-emission transmission electron microscopy (FETEM) with
300 kV accelerating voltage. To observe the oxidation states of the
transition metal elements, electron energy loss spectroscopy (EELS) data
were collected using a 300KV aberration-collected STEM (JEM-
ARMB300F, JEOL Ltd). X-ray photoelectron spectra (XPS) was performed
by a Thermo Fisher ESCALAB 250X using a monochromatic Al Ka X-ray
source, and all the binding energy were calibrated with C 1s signal at
284.8 eV. Especially for the ex-situ EELS, XPS and XRD measurements,
the post cycled electrodes were first transferred to a hermetically sealed
transfer chamber in a glovebox filling with Ar to prevent exposure to air
or moisture. As for in-situ XRD studies, the time-resolved HEXRD
experiment was performed on NLCFM material during the first cycling at
beamline 11-ID-C, Advanced Photon Source (APS), Argonne National
Laboratory (ANL), with the wavelength of 0.1173 A. The NLCFM cath-
ode electrode was prepared using PVDF as binder on an ultrathin Al foil
and the diffraction patterns were collected every 10 min in a 26 range of
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0°-4° under cycling. Moreover, DEMS experiments were carried out in a
customized cell connected to a gas flow controller and mass spectrom-
eter by using Agilent Technologies 5975C.

2.3. Electrochemical measurements

The cathode electrodes were prepared by using the following steps.
As-prepared active materials were mixed with acetylene black and poly
(vinylidene fluoride) (PVDF) with a weight ratio of 8:1:1 in N-methyl-2-
pyrrolidone (NMP). After stirring for 6 h, the homogeneous slurry was
spread on the clean Al foil, followed by drying at 110 °C in a vacuum
oven overnight. Metallic Sodium disk was employed as the counter
electrode and glass fiber was used as the separator. The electrolyte was a
solution of 1 M NaClO4 in ethylene carbonate/diethyl carbonate (EC/
DEG,1:1 in volume) with fluoroethylene carbonate (FEC 5% in volume)
as additive. The assembly of the CR2032-type coin cells was carried out
in an Ar-filled glove box. Galvanostatic discharge/charge tests were
performed using a NEWARE battery cycler at room temperature. In the
ultra-long cycling test, one formation cycle was performed at 0.1C,
followed by cycling at 2 C. GITT measurement was carried out on a
Maccor test cabinet in the voltage range of 2.5-4.2 V vs Na'/Na. The
Cyclic voltammogram curves were tested by the CHI660D electro-
chemical workstation (CHI Instruments, China).

3. Results and discussion
3.1. Structure and chemical composition analysis

To prove the effectiveness of the Li/Cu co-substitution, the target
samples NFM and NLCFM, as well as mono-doped samples, were syn-
thesized by a solid-state method. ICP-AES measurement results indicate
that the chemical formulas of as-prepared materials are consistent with
the expected stoichiometry (Table S1). To obtain the accurate lattice
parameters and precise atomic positions, the joint refinements based on
both XRD and NPD profiles were performed. As X-ray alone is not sen-
sitive to light elements such as Li and could hardly distinguish elements
with similar atomic numbers such as Fe and Mn, neutron could make up
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for that with the advantage of the sensitivity against nuclei of all atoms
involved. As shown in Fig. 1 and Fig. S1, the Rietveld refined NPD and
XRD patterns demonstrate that all Bragg reflections in each individual
sample, as expected, could be assigned to the P2-type layered structure
(space group: P63/mmc, JCPDF no. 27-751) without any impurity. The
good agreement between the fitting and experiment patterns confirms
that Li, Cu, Fe and Mn atoms are all located in the TM layer (Fig. 1c and
f). Additionally, there is no noticeable reflection corresponding to long-
range in-plane ordering associated with TM ion units or Na*/vacancy
ordering. The detailed structural information is given in Table S2. A
slight lattice contraction was observed with the introduction of Li and
Cu, where a=29224(1) A and c=11.2336(3) A for NFM and
a = 2.9028(1) A and ¢ = 11.1469(3) A for NLCFM. This contraction was
caused by the oxidation of the Mn3" to Mn*" (ionic radii of Mn®" is
larger than that of Mn*") due to the presence of the Li* and Cu?* in the
TM layer. In addition, after co-doping, the thickness of Na layer (Tna)
decreases while the thickness of TM layers (Tty) increases.

The HRTEM images in Fig. S2 further corroborate the typical P2
structure of all four samples, where the (002) plane and the fast Fourier
transform (FFT) images (inset of Fig. S2) are clearly shown. However,
for the samples containing the single dopant element, when their
anticipated content of heteroatom was raised to the same amount in
NLCFM (Nag gs5Lig.0gCuo.osFen.24Mng 602), the expected stoichiometry
(Nag,esLio.16Fe0.24Mno 602_x, Nag.e5Cuo.16F€0.24Mng 02) could not be
achieved and the impurities would arise (Fig. S3), implying the co-
substitution strategy is beneficial to boost the content of heteroatoms
in materials [33]. In addition, SEM images show that all samples exhibit
plate-like particles with around 2-4 um in size (Fig. S4). EDS mapping
images reveal that various elements uniformly distribute throughout
particles without any aggregation (Fig. S5). All the above results confirm
the target cathodes are successfully prepared and the
heteroatom-doping strategy has negligible influence on sample
morphology and element distribution, laying the groundwork for further
investigating their performance and behaviors.
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Fig. 1. Crystal structure characterization on powder samples of NFM and NLCFM. (a-b, d-e) Observed and calculated XRD and NPD profiles for NFM and NLCFM:
(black) observed; (red) calculated; (blue) difference plot; (green bars) Bragg reflections. (c, f) Schematic illustration of the crystal structure of NFM and NLCFM.
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3.2. Electrochemical behavior

The electrochemical performances of the NFM and NLCFM were
comparatively studied in sodium half cells. Fig. 2a and b show the gal-
vanostatic charge/discharge curves in a voltage range of 2.5-4.2 V at a
current rate of 0.1 C (10 mA g’l). In the first cycle, NFM electrode de-
livers a discharge specific capacity of 100 mA h g~! and two distinct
voltage plateaus at 4.1 V and 3.5 V are observed, corresponding to phase
transitions [14]. A much lower discharge capacity of 85 mA h g1 is left
just after 10 cycles accompanied by the shortening of the voltage pla-
teaus, in accordance with the rapid decay of two obvious peaks in the
dQ/dV curves (Fig. 2d), revealing that severe irreversible behaviors
occur during the cycling. In contrast, NLCFM electrode proceeds
through a more solid-solution like reaction (Fig. 2b), as reflected in
sloping charge/discharge profiles as well as highly reversible dQ/dV
curves (Fig. 2e). Interestingly, the specific capacity of NLCFM gradually
increases from 78 mA h g ! to 85 mA h g~! during the initial 10 cycles,
and even reaches 90 mA h g~! after 40 cycles (Fig. 2¢), which could be
attributed to the minimization of Mn®" content after Li/Cu
co-substitution and consequent gradual electrochemical activation of
Mn®*/Mn**. Their performance differences are clearly demonstrated in
Fig. 2c. With the increasing cycle number at 0.1C, the NFM electrode
encounters very fast capacity decay with an inferior retention of only
40% after 100 cycles, while NLCFM exhibits great superiority in both
cyclability and average potential. Moreover, the GITT result in Figs. 2f
and S6 indicates that Na-diffusion coefficients (Dyj,) in NFM exhibits a
sharp drop at around 3.5 V during the initial discharging, corresponding
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well to the plateau shown in discharge profile (Fig. 2a). The occurrence
of minima signals the attenuation of Na' mobility, which could be
attributed to the host rearrangement [43]. All these results preliminarily
demonstrate the feasibility and effectiveness of our heteroatom
co-doping strategy, in which the introduction of Li/Cu as heteroatoms is
greatly in favor of the cycling performance, midpoint voltage and rate
capability of cathodes.

In order to clarify the role of each heteroatom in the co-substitution
NLCFM sample, four as-prepared electrodes including mono-doped ones
were tested by CV between 2.5 and 4.2 V, shown in Fig. S7. In pristine
electrode, the anodic peaks at potentials higher than 3.9 V, as well as the
cathodic peak at around 3.5 V, are attributed to the redox reactions of
the Fe>/Fe** couple, while the peaks below 2.7 V should correspond to
the redox reactions of the Mn®*/Mn** [24]. With the Cu-substitution,
the abovementioned anodic peak of Fe>*/Fe*" becomes broader due
to the incorporation of oxidation/reduction peaks of Cu?*/Cu®*
(4.0/3.9 V) [28], which could contribute to the capacity and improve
the working potential in the electrode. With the Li-substitution, the
smoothing of peaks in NLFM are achieved and the CV profiles in the first
5 cycles have better overlapping compared to the NFM and NCFM,
suggesting optimized structural reversibility during cycling. In the case
of Li/Cu co-substitution, the disappearance of Mn>*/Mn** redox peaks
induced by maximization of Mn*" content, and the mergence of
Fe3"/Fe** and Cu®>*/Cu®t redox peaks [28,30], jointly lead to more
sloping and flat CV curves, indicating that the structure of NLCFM is
stable upon Na' insertion/extraction. In addition, as elucidated in
Figs. S8 and S9, these redox activities are detected by XPS and EELS.
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Fig. 2. Electrochemical performance of NFM and NLCFM electrodes in half-cell system. (a-b) Galvanostatic charge/discharge curves at 0.1C of NFM and NLCFM
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Therefore, upon initially charging to 4.2 V, a charge capacity of 102.8
mAh g1 is achieved through the directly oxidation of Mn>* and Fe** in
NFM, corresponding to 0.39 Na™' extraction from the host. As for
NLCFM, the first charging capacity matches well with its theoretical
capacity, in which 0.32 Na' are removed, and the Cu?>"/Cu®' and
Fe3*/Fe* redox couple contribute to almost all the experimental
capacity.

Given the results of the rate and cycling performance of these four
electrodes in Fig. S10, it further confirms that Cu contributes to the
capacity and Li improves the stability. With the help of these two kinds
of heteroatom substitution, the NLCFM exhibits the best rate capability
and cycling stability among four kinds of Fe- and Mn- based oxides.
Therefore, a longer cycling test of NLCFM was conducted at 2C and it
exhibits outstanding cycling performance, as shown in Fig. 2g. A ca-
pacity retention of 88.2% is achieved after 500 cycles, with the capacity
loss rate of only about 0.026% per cycle, corroborating the superior
reversibility during cycling.

3.3. Structural evolution of electrodes upon Na* (de)intercalation

To understand the nature of discrepancies in electrochemical per-
formance, the structural evolutions of the NFM and NLCFM electrodes
during the first cycle were analyzed by ex-situ XRD (Fig. 3). Seven key
points indicated by colored circles were selected, and corresponding
XRD patterns of NFM are shown in Fig. 3a. It is clear that the phase
transformation occurs when the NFM electrode crosses the long plateau
at around 4.1 V and 3.5 V, respectively, in accordance with the low Dg,
deduced from GITT results. When the NFM electrode is charged to 4.1 V,
the intensity of P2 (002) peak at 20 = 15.8° decreases dramatically
along with the emergence of a new characteristic peak at its right side.
Combined with other reflections, this newly formed phase is assigned to
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the “Z” phase with low crystallinity [7,12]. Upon further charging, this
new characteristic reflection gradually reached 20 = 17.1° and the “Z”
phase almost dominated the structure. The peaks indexed in “Z” phase
are weak and broad, indicating an evolving intergrowth between the
P-type stacking (Na in prismatic sites) and O-type stacking (Na in
octahedral sites) [44]. During the discharge process, the P2 reflections
reappear at around 3.5 V at the expense of the “Z” phase. The evolution
of the lattice parameters determined by Le Bail fitting methods could
also demonstrate the phase transition. As presented in Fig. 3b, the
in-plane lattice parameter experiences an evident decrease from 2.91 A
to 2.85 A upon desodiation process. Meanwhile, the average interlayer
distance of NFM undergoes a sharp contraction from 5.63 A to 5.20 A
because the interlayer spacing of newly formed O-type layers induced by
the glide of TMO4, slabs at high voltage is much smaller than the original
P-type layers [45], as illustrated in Fig. S11. Although all these lattice
parameters nearly return to their initial values at the end of discharge,
suggesting a reversible P2-Z phase transition, the huge lattice variations
were still clearly observed in the NFM electrode.

Very different from the NFM electrode, the XRD patterns for NLCFM
in Fig. 3c show no new peaks beyond the P2 phase during the entire
charge and discharge process. The complete solid-solution reaction is
also reflected in the continuous change of the in-plane lattice parameter
and the average interlayer distance (Fig. 3d). Note that the color-
highlighted regions representing the range of parameters evolution in
the NFM electrode (1.79% along a-axis and 7.68% along c-axis) is much
larger than that in the NLCFM electrode (0.78% along a-axis and 1.12%
along c-axis). It is also worth noting that, even with the same amount of
Na™ extraction/insertion, NLCFM always exhibits slighter changes in
cell parameters compared with the NFM electrode. The obvious differ-
ence in structural characteristics between two samples lead to different
electrochemical behaviors, indicating that the suppression of P2-Z host
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Fig. 3. Ex-situ XRD characterization on the structural evolution of NFM and NLCFM electrodes. (a, ¢) The ex-situ XRD patterns were collected during the first cycle
under a current rate of 0.1 C for NFM and NLCFM electrodes, with the corresponding first cycle electrochemical curves on the left. * represents the peaks from Al foil.
(b, d) The evolution of in-plane lattice parameter, average interlayer distance fitted by ex-situ XRD patterns.
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rearrangement should account for the improved rate capability and
cycling life. Further inspections on the XRD patterns of the mono-doped
samples at the fully charged state (Fig. S12) also demonstrate a similar
phenomenon, in reasonable agreement with their performance
(Fig. S10).

For the NLCFM electrode, the single-phase solid-solution reaction
with good reversibility is further confirmed by the in-situ HEXRD results
(Fig. 4). Specifically, during the first charge, the (002) peak gradually
shift leftward, while (100) and (101) peaks shift rightward, demon-
strating the enlarged electrostatic repulsion between adjacent oxygen
layers and electrochemical oxidation of TM ions respectively. Conse-
quently, when Na™ is extracted, nearly linear contraction of the in-plane
lattice (0.93% along a-axis) and expansion of interlayer distance (1.19%
along c-axis) were precisely monitored, showing a similar tendency with
ex-situ XRD results. Not only could NLCFM electrode recover to pristine
state regarding all the diffraction peaks and lattice parameters upon
discharge, but it experiences an ultralow cell volume change of around
0.7% during the whole cycle. The nearly “zero strain” [46-48] perfor-
mance represents the minimum value for the Li-doped P2 Fe/Mn-based
and Cu-doped P2 Fe/Mn-based layered oxide cathodes for SIBs to date
(Table S3). In short, ex-situ XRD and in-situ HEXRD corroboratively
confirm that Li/Cu co-substitution for P2-type Fe- and Mn- based oxides
can effectively prevent P2-Z phase transition and restrain the volume
changes simultaneously during cycling, enabling the zero-strain char-
acteristic and excellent electrochemical properties. In addition, to
illustrate the zero-strain characteristic better, the lattice variation of

(a)
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some previously reported cathodes is also reviewed in Fig. S13.

3.4. Failure analysis of electrodes

In order to gain more insight into the differences between two ma-
terials in electrochemical reversibility, both of the electrodes after 50
cycles were subjected to post-mortem analysis. As shown in Fig. 5a, after
cycling, a mass of cracks could be observed in the cross-sectional image
of the NFM sample at low magnification. However, the NLCFM particle
is almost intact and only a few tiny microcracks appear. At high
magnification, the HRTEM patterns (Fig. 5b-c) acquired along the [100]
axis show that distinct cracking and severe local structural distortion
occurred in the bulk and surface region of the post cycled NFM, con-
trasting to the well-maintained (002) layered planes in Li/Cu co-
substitution electrode. From these results, we found that the structural
integrity of NFM and NLCFM are well in accordance with the cycling
stability plots displayed in Fig. 2, in which the NFM suffers rapid ca-
pacity fade while the NLCFM sample possesses extraordinary cyclability.
It is also intriguing to note that the intragranular cracks (highlighted by
dashed blue lines in Fig. 5b) exhibit evident crystallographic orienta-
tion, which is parallel to the (002) planes and consistent with the di-
rection of Na* shuttling. Notably, similar intragranular cracking, which
generally appears near the charging end with phase transition, has also
been reported in other layered oxide cathodes for Na- and Li-ion bat-
teries [49-52]. Therefore, combined with lattice parameter changes
displayed in Fig. 3, cracks on the NFM particle can be correlated to the
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Fig. 4. In-situ synchrotron HEXRD characterization on the structural evolution of NLCFM electrode. (a) The contour plot of in-situ XRD patterns collected under a
current rate of 0.1C, with the corresponding first cycle electrochemical curves on the left. (b)Processed images of Bragg peaks (002), (100) and (101) for NLCFM. (c)
The evolution of in-plane lattice parameter, average interlayer distance and unit cell volume for the NLCFM electrode fitted by in-situ synchrotron XRD patterns.
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Fig. 5. Post-mortem analyses of NFM and NLCFM electrodes. (a) The cross-sectional images of the particles at low magnification. (b-c) The HRTEM images acquired
in the bulk and at the interface. (d) The trend in the molar ratio of Mn to Fe within cathode electrodes during cycling. (e-f) CO evolution of NFM and NLCFM

cathodes upon first cycle.

huge internal lattice stress caused by the deleterious P2-Z phase tran-
sition. Besides, with prolonged cycling, it is quite possible that the highly
distorted lattice area shown in Fig. 5b finally will evolve into cracking
region.

In terms of the outermost section of cathodes particle (Fig. 5c¢), a
thick degraded surface layer without the original ordered P2 lattice
structure appeared in the NFM sample, which could be attributed to
detrimental side reactions on the electrolyte-cathode interphase [53],
including TM dissolution, electrolyte decomposition, etc. Particularly
for the Mn-rich cathodes, Mn dissolution has been proven to be highly
associated with surface degradation because of the destructive
Jahn-Teller distortion and disproportionation of Mn3* [54]. To verify
this point, ICP-AES was employed to investigate the degrees of Mn
dissolution from electrodes at different cycle rates. According to the
profile in Fig. 5d, though both NFM and NLCFM electrodes show a
decreasing trend in the mole ratio of Mn to Fe during half-cell cycling,
the figure for NLCFM still exhibits fewer changes than NFM with the
identical cycle period. By the end of 100 cycles, the figure for n(Mn)/n
(Fe) has dropped from around 1.5 to below 1.42 in NFMO, while that of
NLCFM decreased from nearly 2.5 to over 2.44, maintaining compara-
tively stable. Besides, based on previous findings, Mn is more susceptible
to the attack of HF and solvent molecules than Fe [39]. Hence, the above
results clearly suggest that Mn dissolution in NLCFM is far less than
NFM. This phenomenon could probably be explained by the

minimization of the quantity of Mn®' in NLCFM through Li/Cu
co-substitution, which leads to low Mn®"/Mn** redox activity (Fig. S8,
9), a corresponding decrease in Jahn-Teller distortion, disproportion-
ation behavior, and consequent Mn dissolution [55,56]. Meanwhile, as
previously studied, the scavenging effect of Li dopant could also help to
inhibit the TM cations dissolution and improve the interfacial stability
[39]. Moreover, gas evolution, as another byproduct of the parasitic
reactions (e.g., decomposition of the residual NayCOs, electrolyte
oxidation) on the cathode surface [57], was monitored by DEMS in the
initial operation for the NFM and NLCFM cells. In Fig. 5e-f, the volume
fraction of CO evolution is plotted as a function of time. As a striking
comparison, the CO3 occurred at around 3.5 V and peaked at the end of
charging in the NFM cell, while there is no evidence of CO5 release in the
NLCFM cell, indicating a stable and clean electrode/electrolyte interface
has been built for NLCFM, in keeping with the negligible surface
structure collapse in NLCFM (Fig. 5c). All the above analyses clearly
demonstrate that the repeated P2-Z phase transition with huge lattice
strain directly induces cracking generation and particle disintegration,
while both TM dissolution and interfacial side reactions contribute to
severe capacity decay as well. In addition, during the following cycling,
crack propagation and growth would inevitably result in more newly
formed surfaces, and thus further accelerating electrolyte consumption,
surface degradation, and resultant performance deterioration [50,58].
To further evaluate the application prospects of materials, the NFM
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and NLCFM powders were either exposed to air or soaked into water,
and then analyzed by XRD. As shown in Fig. S14, after aging experi-
ments, the hydrated layered phase arises apparently in NFM samples,
while the NLCFM powders show consistent XRD patterns compared with
the pristine one. The excellent air-stability for NLCFM is attributable to
the decreased distance of Na layers (Table. S2) and enhanced electro-
chemical redox potential (diluting redox couple of Mn**/Mn*t and
introducing Cu?*/Cu®") [59,601, which help to suppress the tendency
toward Na™ extraction and H,O molecule insertion simultaneously.

4. Conclusion

In summary, a novel cathode material NaggsLip 0sCuo.os-
Fep.24Mng 02 for sodium-ion battery was designed and synthesized
successfully, based on the Li/Cu co-substitution strategy of combining
the strengths of different heteroatoms. It is confirmed the introduction of
lithium and copper raises the average redox potential and stabilizes the
lattice structure simultaneously. As a result, high average voltage of
~3.5V, high tolerance toward moisture, and the excellent cycle stability
(88.2% capacity retention after 500 cycles) are achieved, suggesting an
extremely promising cathode material. Combing with in-situ and ex-situ
XRD characterizations as well as detailed post-mortem analysis, we
revealed that stable host with less TM dissolution and negligible accu-
mulated strains (unit cell volume evolution as low as 0.7%) upon cycling
is the key to deliver outstanding electrochemical performance. For the
co-substituted electrode, the P2-Z phase transition is completely sup-
pressed within the voltage range of 2.5-4.2'V, so achieving a solid-
solution-like reaction and excellent cyclability. Such a universal co-
substitution strategy could also be employed to other intercalation
cathodes. Moreover, our findings demonstrate that realizing the com-
plete solid-solution reaction during the Na® (de)intercalation is an
instructive development direction for designing high-performance
cathode materials for SIBs.
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