Journal of Materials Chemistry A

PAPER

View Article Online
View Journal | View Issue

Cite this: J. Mater. Chem. A, 2021, 9, 22952

Balancing stability and Li-ion conductivity of Li₁₀SiP₂O₁₂ for solid-state electrolytes with the assistance of a body-centered cubic oxygen framework†

Bingkai Zhang,^a Zhiwei He,^a Jiajie Zhong,^a Luyi Yang, ^b Zhan Lin ^a and Feng Pan ^b*

Li $_{10}$ MP $_2$ S $_{12}$ (LMPS, M = Ge, Sn, or Si) share an underlying body-centered cubic (bcc) anion framework enabling their high Li-ion conductivity. To take full use of the high conductivity of the bcc anion framework and boost the electrochemical stability, we have theoretically developed the chemistry of local structural motifs of LMPS to build the oxygen frameworks Li $_{10}$ SiP $_2$ O $_{12}$ (LSPO) and Li $_{19}$ Si $_2$ P $_4$ O $_{23}$ Cl (LSPOCl), which combine good electrochemical stability and high Li conductivity. They exhibit a wider electrochemical stability window compared to their sulfur analogue. At the anode side, they form ionic conductive but electronic insulating phases that prevent further reduction. The bcc oxygen framework allows Li cooperative migration with a low migration barrier (\sim 0.30 eV) in adjacent tetrahedral sites, which is most desirable for fast Li-ion conductors. The addition of halogen Cl contributes to the Li-ion migration because of the increased hybridization between the Si/P and Cl atoms. The LSPO and LSPOCl oxides with a bcc-type anion framework could be a viable way to overcome the trade-off between electrochemical stability and ionic conductivity.

Received 27th July 2021 Accepted 21st September 2021

DOI: 10.1039/d1ta06338c

rsc.li/materials-a

1. Introduction

In electric vehicle batteries, safety concerns have been an obstacle for conventional rechargeable lithium batteries (LIBs) owing to their potential risks such as volatilization, flammability, and explosion.¹⁻³ Currently, solid-state lithium-ion electrolytes are being considered as potential replacements for liquid electrolytes due to the large electrochemical stability voltage window, high chemical stability, and diminished flammability.4-6 Currently, the highest-conductivity inorganic solidstate electrolytes (ISEs) are in lithium thiophosphate systems, with Li₇P₃S₁₁ and materials isostructural to LMPS (with a space group P42/nmc), having room-temperature conductivities of up to 17 mS cm⁻¹ and 25 mS cm⁻¹, respectively, even higher than those of organic liquid electrolyte counterparts (~10 mS cm⁻¹).⁷⁻⁹ The reason behind the high Li-ion conductive ISEs is attributed to a body-centered cubic (bcc) sulfur anion framework that allows Li-ions to migrate within a network of energetically equivalent LiS₄ tetrahedral sites.^{8,10,11} However, currently, there are three main obstacles for LMPS: (1) strong interfacial reactions at the cathode-electrolyte interface, (2) narrow electrochemical stability window, and (3) very poor moisture stability.¹²

In contrast, the oxygen-based analogues can avoid the abovementioned interfacial stability (the interface between the highvoltage transition metal oxide cathode and ISEs) and moisture stability problems. 13-15 Recently, there have been few efforts toward the understanding of Li-ion diffusion of oxygen partially substituted Li₁₀MP₂S_{12-x}O_x, and it has been found that the presence of PO₄ units helps in structural stability without reducing Li-ion conductivity.16,17 Tuning the two different local structural motifs ($(M/P)S_4$ and LiS_x units) by oxygenation within the rare bcc surface framework may well combine the stability with high Li conductivity. However, there are a few studies about the full substitution of sulfur by oxygen, that is, $Li_{10}MP_2O_{12}$ (LMPO), especially about structural properties, electrochemical stability, and Li-ion diffusion in LMPO. Whether this lack of good LMPO conductors is intrinsic or a result of the fact that they may be more difficult to synthesize is not yet clear. To date, just one experimental study demonstrated the feasibility of the synthesis of Li₁₀SiP₂O₁₂.18

Here, using density functional theory (DFT) and molecular dynamics simulations coupled with the Pymatgen code, we have investigated the crystal structures of $\mathrm{Li_{10}SiP_2O_{12}}$ (LSPO) and its chlorine (Cl)-doped one $\mathrm{Li_{19}Si_2P_4O_{23}Cl_1}$ (LSPOCl), and focused

^aGuangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China. E-mail: zhanlin@gdut.edu.cn

bSchool of Advanced Materials, Peking University, Shenzhen, China. E-mail: panfeng@pkusz.edu.cn

[†] Electronic supplementary information (ESI) available. See DOI: 10.1039/d1ta06338c

on three issues: (i) the structural and electrochemical stability, (ii) the Li-ion diffusivity and the Li-ion transport mechanism, and (iii) the O-Cl mixed effects on the stability and ionic conductivity.

Results and discussion 2.

2.1. Structural properties, phase stability, and electrochemical stability

We employ the well-studied Li₁₀SiP₂S₁₂ (LSPS) framework to provide an insight into the influence of full oxygenation that is Li₁₀SiP₂O₁₂. As shown in Fig. 1a, the LSPO structure has the following properties: (i) Octahedrally coordinated lithium (4d sites) is edge-shared with 4d (P/Si)O₄ tetrahedra along the c-axis and corner-shared with 2b PO₄ tetrahedra along the a- and baxes, forming the backbone of the structure. (ii) The two tetrahedrally coordinated sites (the 8f and 16h sites) form onedimensional chains of edge-sharing tetrahedra. Upon substituting S with O in LSPS, the increased hybridization (covalency) between the Si/P and O elements can shorten the bond length between the cation and anion, and thus reduces the lattice parameters. As expected, after the optimization, the lattice parameters of LSPO (Fig. 1a) are a = b = 7.08 Å, and c =10.41 Å ($\alpha = 87.56^{\circ}$, $\beta = 91.12^{\circ}$, and $\gamma = 90.06^{\circ}$). The lattice parameters calculated for LSPO are much smaller than those of LSPS (a = b = 8.75 Å, and c = 12.89 Å ($\alpha = 88.56^{\circ}$, $\beta = 91.07^{\circ}$, and $\gamma = 89.33^{\circ}$)). Therefore, the volume of the Li-ion diffusion channel in LSPO is also smaller than that in LSPS. As suggested by previous studies, the contractible diffusion channel within a given crystal structure may increase the Li-ion migration activation energy and weaken ionic conductivity.19-21 But the Coulomb interactions among Li-ions may increase Li-ion mobility because of the shortened Li–Li distances in the c-axis and ab-plane, making the overall effect on the migration barrier unclear. In addition, using the GCLP and DFT-computed bulk energy of LSPO, the compositions that appeared in the Li₂O-P₂O₅-SiO₂ phase space are shown in Fig. 1b. There is only one combination for LSPO decomposition or synthesis that is the decomposition of LSPO into ternary Li₃PO₄ and Li₄SiO₄, with a decomposition energy of 91.23 meV per atom. Based on the definition of phase decomposition energy ($E_{pd} = E(LSPO)$ – $E(\text{Li}_3\text{PO}_4) - E(\text{Li}_4\text{SiO}_4)$), a positive value means the decomposition is thermodynamically unfavorable. Thus, LSPO shows very good phase stability.



Fig. 1 (a) Top (left inset) and side (right inset) views of the LSPO crystal structure. (b) Compositions that appeared in the $Li_2O-P_2O_5-SiO_2$ phase space along with LSPO. The purple, red, and yellow spheres represent Li, O, and S atoms, respectively.

Except for the smaller lattice parameters, the electronic structures (Fig. 2a) as reflected by the total density of states (TDOS) for LSPS, LSPO, and LSPOCl show that the oxygenation greatly enlarges the bandgap ($\Delta_{\rm g} = 5.54$ eV (5.21 eV) vs. 2.44 eV for the LSPO (LSPOCI) vs. the LSPS, respectively) because the strong hybridization of Si/P with O in (Si/P)O4 units lowers the oxygen electron states. LSPO and LSPOCl are wide-bandgap insulators with limited electrical conductivity. While the large bandgaps of LSPO and LSPOCl suggest high electrochemical stability, the actual stability also depends on the alignment of the bands relative to the Li metal anode Fermi level and the cathode conduction band. The energy band of the Fermi level or conduction band can be directly converted to lithium chemical potential using the above equation $(\mu_{Li} = \mu_{Li}^0 - eV)$ detailed in the computational section. After examining the phase diagram of μ_{Li} ranging from Li metal potential (0 V) to the cathodic voltage regime (5 V), we have determined the "stability window" versus bulk Li for LSPO, LSPOCl, and the reference ISEs such as LSPS, as shown in Fig. 2b, c and d, respectively. The Li uptake processes of per formula unit (f.u.) of LSPO and LSPOCl against voltage vs. Li/Li⁺ are shown in Fig. S1 of the ESI.† For LSPO (Fig. 2b), at the Li-metal anode (from 0 to 0.22 V) LSPO decomposes into Li₂₁Si₅, Li₁₃Si₄, Li₇Si₃, Li₂O, and Li₃P. The formation of electrically conductive Li-metal alloy makes the interphase an MCI (mixed ionic-electronic conducting interphase) leading to the continued decomposition of LSPO. From 0.22 to 0.68 V, LSPO begins to decompose into Li₂O, Li₄SiO₄, and Li₃P which likely functions as an SEI (solid electrolyte interphase) due to the poor electronic conductivity. At the anode side 0.68 V to the cathode side 3.46 V, LSPO theoretically decomposes into Li₄SiO₄ and Li₃PO₄ whose bandgaps are large enough ($\Delta_g = 5.09$ and 5.84 eV) to block electrons but allow Liion transport. At the cathode side 3.46 V, LSPO will decompose into LiO_8 ($\Delta_g = 0$ eV), Li_3PO_4 , Li_2SiO_3 , and Li ($\Delta_g = 0$ eV) as it makes the interphase an MCI. Thus, although the absolute

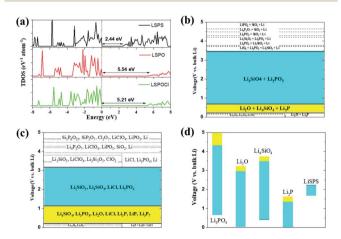


Fig. 2 (a) Total density of states of LSPS, LSPO, and LSPOCI, respectively. (b and c) The voltage profile and phase equilibria of LSPO and LSPOCI solid electrolytes upon lithiation and delithiation that determine the anodic and cathodic reactions, respectively. (d) Electrochemical stability windows (cyan bar). The yellow region reflects the possible extension of the electrochemical stability window.

electrochemical stability window of LSPO does not exist, decomposition products are electronically insulating and Liconducting at 0.22 to 3.46 V and can inhibit further decomposition, so the electrochemical stability window is suggested in the range of 0.68 to 3.46 V (in the cyan region of Fig. 2b) and the extended range of 0.22 to 0.68 V (in the yellow region of Fig. 2b) where the interphases are SEI-like compounds.

In that spirit, we suggest that LSPOCl can be electrochemically stable in the window of 1.14 to 3.17 V (in the cyan region of Fig. 2c) where the decomposition phases Li₂SiO₃, Li₄SiO₄, LiCl, and Li₃PO₄ are also good ionic conductors and electronic insulators. The SEI-like interphases in the range of 0.22 to 1.14 V (in the yellow region of Fig. 2c) may further widen its electrochemical window. The addition of Cl may contribute to the formation of a passivating SEI containing LiCl that prevents further reduction. In addition, for the phase equilibria of LSPO at 0 V or against Li metal such as Li₃PO₄, Li₄SiO₄, Li₂O, and Li₃P, the electrochemical stability calculations (Fig. 2d) show that they exhibit a wider stability window, especially for Li₃PO₄ and Li₄SiO₄, which further protects LSPO and LSPOCl from decomposition. Indeed, many experimental results prove that the formation of passivating SEI leads to a wider electrochemical stability window in principle than in reality.²²⁻²⁵ Lastly, such DFT estimated stability windows indicate the better inherent stability and performance of LSPO and LSPOCl than that of LSPS.

2.2. Li-ion migration mechanism in LSPO and LSPOCI

The Li diffusion properties of ISEs will change with anion substitution, so it is important to evaluate the Li-ion mobility (Li-ion migration activation energy) and transport mechanism in the bcc oxygen sublattice. Previous studies suggest that the substitution of sulfur by oxygen in the thio-LISICON leads to an increase of Li-ion migration activation energy, such as Li₃PS₄ and Li₃PO₄ as well as Li₄P₂S₇ and Li₄P₂O₇.²¹ The reason for the high migration barrier may come from the smaller volume and reduced polarizability of oxides, which increases the electrostatic interactions between the Li-ion and the host structure. On the other hand, the bcc oxygen framework also reduces the caxis lattice constant and thus reduces the Li-Li distance (up to 0.6 Å decrease). This effect may increase the Coulomb interactions among Li-ions, and thus decreases the activation energy of cooperative migration. Therefore, it is necessary to study the Liion migration barrier and the transport mechanism. Fig. 3a shows the possible diffusion network consisting of c-axis diffusion (Li₁-Li₂-Li₁) and interchannel diffusion in the abplane (Li₁-Li₃-Li₁). The distinct Li sites are labeled as 1, 2, and 3. By applying the AIMD simulation, Fig. 3b shows the Li-ion diffusion trajectory represented as dots including Li₁/Li₂ (purple dots) and Li₃ (pink dots). The diffusion in the *ab*-plane becomes apparent over 750 K (Li₃-ions (pink dots) are involved in the whole diffusion). The AIMD results suggest that Li-ion diffusion in the c-axis direction is much more favorable than that in the ab-plane, and the Li-ion diffusion pattern changes from one-dimensional (1D) to three-dimensional (3D) with increasing temperature.

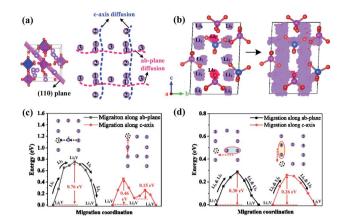


Fig. 3 (a) Schematic diagram of the (110) plane of LSPO. (b) Li-ion trajectory dots in LSPO obtained from *ab initio* molecular dynamics (AIMD) simulations at 300 K (left) and 800 K (right). The purple dots represent the original Li₁ and Li₂ ions and the pink dots represent original Li₃ ions. (c and d) Energy diagrams of Li-ion migration in LSPO (c) *via* the one Li-ion direct-hopping mechanism, (d) *via* two Li-ion cooperative migration mechanisms along the *ab*-plane and c-axis. The vacancy of Li_x is labeled as Li_xV. The purple, red, blue, and pink spheres represent Li, O, Si, and P atoms, respectively.

To investigate the Li-ion transport mechanism in more detail, the climbing image-nudged elastic band (Cl-NEB) calculations are carried out as shown in Fig. 3c and d. Two migration models with the assistance of Li-ion vacancies are considered: (i) one Li-ion direct-hopping migration (Fig. 3c) and (ii) two Li-ion cooperative migration (Fig. 3d). The cooperative migration model is that two adjacent Li ions migrate in pairs and displace the Li-ions into their neighboring sites.26-28 The detailed results for the energy path of Li-ion cooperative migration in structures along the ab-plane and c-axis are shown in Fig. S2 and S3 of the ESI,† respectively. Such a mechanism has long been believed to dominate cation migration in LMPS,29 $\text{Li}_{1.3}\text{Al}_{0.3}\text{Ti}_{1.7}(\text{PO}_4)_3$ (LATP), 30 and $\text{Li}_7\text{La}_3\text{Zr}_2\text{O}_{12}$ (LLZO), 31 but has not been elucidated in LSPO. For one Li direct-hoping migration (Fig. 3c), the calculated energy profile along the ab-plane with the Li₁ and Li₃ sites has a barrier of 0.76 eV and that along the c-axis with the Li₁ and Li₂ sites has a barrier of 0.46 eV. For the two Li-ion cooperative migration (Fig. 3d), Li₁ & Li₂ and Li₁ & Li_3 cooperate to transport along the ab-plane and c-axis, respectively. Not surprisingly, the energy profile shows that cooperative migration has much lower activation energy (0.30 eV and 0.26 eV along the *ab*-plane and *c*-axis, respectively) than one Li-ion direct migration. The calculated activation energy of 0.26-0.30 eV for LSPO is comparable to the value of \sim 0.30 eV calculated for the LLZO composition. ^{32,33} Therefore, in bcc-type lattices formed by oxygen, the Li migration barrier arising from cooperative migration is close to that of other ISEs, suggesting an affordable Li superionic conductor.

Based on the above discussion, LSPO has a wider electrochemical stability window (Fig. 2b), but the use of oxygen comes at the cost of a migration barrier at least 0.90 eV higher than that of sulfide LSPS. Substituting partial oxygen with halogen Cl, that is LSPOCl, also maintains a wider electrochemical

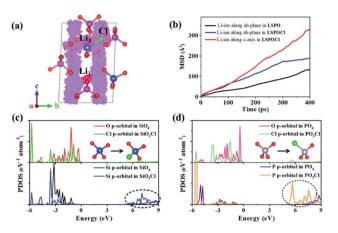


Fig. 4 (a) Li-ion trajectory dots in LSPOCl obtained from AIMD simulations at 800 K. The purple dots represent the original Li $_1$ and Li $_2$ ions and the pink dots represent original Li $_3$ ions. (b) Mean square displacements (MSDs) of Li-ions along the c-axis and a-axis crystallographic directions are obtained from the AIMD trajectory at 800 K within LSPO and LSPOCl. (c and d) Partial density of states (PDOS) for the p-orbitals of O, Cl, P, and Si before and after Cl-doping in (c) SiO4 and SiO3Cl and (d) PO4 and PO3Cl, respectively. Insets show the (Si/P) O4 and (Si/P)O3Cl structural units. The green, red, blue, and pink spheres represent Cl, O, Si, and P atoms, respectively.

stability window (Fig. 2c), but the effect on the ion mobility is unclear. To study the effect of Cl-doping on Li-ion mobility, we have done the AIMD simulation in LSPOCl, as shown in Fig. 4a. The Li-ion trajectory dots overlap significantly at the upper Li₃ site with the Cl-dopant, but less overlapping occurs at the lower Li₃ site. This suggests that Cl-doping facilitates the diffusion of Li_3 ions from one *c*-axis channel to the adjacent one. The mean square displacement (MSD) of Li ions along the c- and a-axis directions determined from the AIMD trajectory of 400 ps reveals a nearly isotropic 3D Li-diffusion pattern (Fig. 4b). Such 3D diffusion behaviour (blue line in Fig. 4b) within the O-Cl mixed framework is in slight contrast to the anisotropic 3D diffusion in pure LSPO (black line in Fig. 4b), also suggesting that the Cl-doping increases the Li-ion diffusion along the abplane. The results are consistent with previous studies that have found that Li-ion conductivity in Cl-doped LSPS is improved compared to pure LSPS.29

To further explain the effects of the Cl-dopant on conductivity, Fig. 4c and d show the partial density of states (PDOS) of LSPO and LSPOCl for the O-, Si-, P-, and Cl- p-orbitals, respectively. The hybridization between Si/P and O atoms leads to redox stability and also the positive charges of Si/P atoms. But compared with the (Si/P)O₄ units, (Si/P)O₃Cl units show the following two differences. The first one is that the orbitals of Si or P shift downward and lower the electron states due to the charge transfer from Cl atoms to Si atoms in the SiO₃Cl anions. The second one is that the shallow levels located near the bottom of the lowest unoccupied molecular orbital (LUMO) at approximately 3.0 eV in the SiO₄ anions turn into deep levels (appeared clear peak value increases) in the (Si/P)O₃Cl units. These levels are related to charge/electron trapping processes in materials. In the (Si/P)O₃Cl units, the deep levels near the

LUMO are expected to weaken the positive charge of the Si/P ions, which reduces the electrostatic interaction between Li ions and the host structure, leading to a lower Li-ion migration barrier. In other words, the increasing hybridization between the Si/P and Cl atoms pulls the electron density away from the Li-ion diffusion channel along the *c*-axis direction. This effect helps to liberate adjacent Li-ions and leads to a levelling off of energy potential of Li-ions that permits high ionic conductivity, which has been proven by experimental studies.³⁴ Therefore, we suggest that hybridizing the anion states is a viable way to increase ionic conductivity.

3. Conclusions

In summary, we have explored the chemistry of local structural motifs within the LMPS framework to overcome the trade-off between electrochemical stability and ionic conductivity. LSPO and LSPOCl exhibit a wider electrochemical stability window compared to their sulfur analogue LSPS. When in contact with Li metal, thermodynamic DFT analysis predicts LSPO and LSPOCl to be fully reduced to products including Li₂O, Li₄SiO₄, LiCl, etc. These decomposition products prevent further reduction of LSPO and LSPOCl as they are electronic insulators and ionic conductors. Furthermore, the lattice formed by O²⁻ anions offers strong Li-Li interactions, and the Li migration barrier in bcc-type anion frameworks is also lower than that of other close-packed types (for example, γ -Li₃PO₄). Cooperative migration both in the ab-plane and c-axis lowers the migration barriers. Cl-doping leads to the variation in the electronic structures and enables further enhancement of the mobility of Li-ions. The Cl-doping effect also suggests that hybridizing the anion states is a viable way to overcome the trade-off between oxidation stability and ionic conductivity. Therefore, compared with traditional individual Li-ion diffusion behavior, Li-ion cooperative migration takes advantage of creating a novel 3D Li-ion diffusion path with lower energy barriers for LISICON-like LSPO solid-state electrolyte to enable fast Li-ion diffusion for advanced all-solid Li-ion batteries.

Methods

All DFT calculations are carried out using the Vienna ab initio simulation package (VASP)35 within the projector augmented wave (PAW) approach.36 The generalized gradient approximation (GGA) is adopted in the parameterization of Perdew, Burke, and Ernzerhof (PBE) to describe the exchange-correlation functional.37,38 A supercell containing 4 formula units (f.u.) of Li₁₀SiP₂O₁₂ as a model is used for structural optimization and Li-ion migration calculations. A k-mesh $(2 \times 2 \times 2)$ is generated using the Monkhorst-Pack method to sample the Brillouin zone. The evaluation of the migration barrier of Li-ions is carried out using the supercell with 4 f.u. by the Cl-NEB method³⁹ as implemented in the VASP. The Li-ion diffusivity in LSPO and LSPOCl is studied using AIMD simulations with the GGA-PBE functional as implemented in VASP software. The gamma-only k-point and a supercell containing 4 f.u. of Li₁₀-SiP₂O₁₂ are considered. The time step and the total period cover

for AIMD are 1 fs and 400 ps, respectively. MSD is the average of the total number of Li-ions over the total period. The NVE ensemble at elevated temperature, 800 K, is used during AIMD.

To study the electrochemical stability of the oxides with respect to a range of possible electrochemical redox products, we have evaluated the stability of LSPO and LSPOCl in the range of applied voltage, V. Here, to check the effect of the Cl-dopant on ionic conductivity, one Cl atom is doped with the oxygen of PO_4 or SiO_4 units in four 4 f.u. LSPO, that is $(P/Si)O_4 \rightarrow (P/Si)$ O₃Cl. To maintain the charge compensation, one Li atom along the c-axis is deleted from the bulk structure since Li atoms in the c-axis channel are energetically equivalent in LSPO. The applied voltage can be directly converted to Li chemical potential (μ_{Li}) using equation ($\mu_{Li} = \mu_{Li}^0 - eV$) neglecting overpotential effects, where $\mu_{\mathrm{Li}}{}^{0}$ is the lithium chemical potential in Li metal and e is the elementary charge. The electrochemical stability window of the material corresponds to the range of voltage over which it is stable (exactly on the grand potential convex hull). The grand potential convex hull at a given V is formed by the grand potentials of a set of phases and their linear combinations that minimize the grand potential of LSPO and LSPOCl. Phase diagrams are constructed using the grand canonical linear programming (GCLP) method and the database consisting of DFT-computed bulk energies of crystals, as available in the Open Quantum Materials Database (OQMD).40-43 The above approaches are implemented within Pymatgen (Python materials genomics), which is a robust, opensource Python library for materials analysis. Details of the methodology employed are shown in the usage website: https:// www.pymatgen.org/usage.html.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the GuangDong Basic and Applied Basic Research Foundation (2020A1515110046).

Notes and references

- 1 Y. Tian, et al., Chem. Rev., 2021, 121, 1623-1669.
- 2 A. M. Abakumov, S. S. Fedotov, E. V. Antipov and J.-M. Tarascon, *Nat. Commun.*, 2020, **11**, 4976.
- 3 Y. Ji, Z.-W. Yin, Z. Yang, Y.-P. Deng, H. Chen, C. Lin, L. Yang, K. Yang, M. Zhang, Q. Xiao, J.-T. Li, Z. Chen, S.-G. Sun and F. Pan, *Chem. Soc. Rev.*, 2021, **50**, 10743–10763.
- 4 Y. Gao, A. M. Nolan, P. Du, Y. Wu, C. Yang, Q. Chen, Y. Mo and S.-H. Bo, *Chem. Rev.*, 2020, 9b00747.
- 5 B. Zhang, R. Tan, L. Yang, J. Zheng, K. Zhang, S. Mo, Z. Lin and F. Pan, *Energy Storage Maters*, 2018, **10**, 139–159.
- 6 H. Xu, Y. Yu, Z. Wang and G. Shao, *Energy Environ. Mater.*, 2019, 2, 234–250.
- 7 N. Kamaya, et al., Nat. Mater., 2011, 10, 682-686.
- 8 Y. Wang, W. D. Richards, S. P. Ong, L. J. Miara, J. C. Kim, Y. Mo and G. Ceder, *Nat. Mater.*, 2015, **14**, 1026–1031.

- S. P. Ong, Y. Mo, W. D. Richards, L. Miara, H. S. Lee and G. Ceder, *Energy Environ. Sci.*, 2013, 6, 148–156.
- 10 F. Wu, W. Fitzhugh, L. Ye, J. Ning and X. Li, *Nat. Commun.*, 2018, 9, 4037.
- 11 Y. Mo, S. P. Ong and G. Ceder, Chem. Mater., 2012, 24, 15-17.
- 12 P. Lu, L. Liu, S. Wang, J. Xu, J. Peng, W. Yan, Q. Wang, H. Li, L. Chen and F. Wu, *Adv. Mater.*, 2021, 2100921.
- 13 G. Liu, D. Xie, X. Wang, X. Yao, S. Chen, R. Xiao, H. Li and X. Xu, *Energy Storage Maters*, 2019, 17, 266–274.
- 14 Y. Deng, C. Eames, J.-N. Chotard, F. Lalère, V. Seznec, S. Emge, O. Pecher, C. P. Grey, C. Masquelier and M. S. Islam, J. Am. Chem. Soc., 2015, 137, 9136–9145.
- 15 X. Zhao, Z. Zhang, X. Zhang, B. Tang, Z. Xie and Z. Zhou, J. Mater. Chem. A, 2018, 6, 2625–2631.
- 16 K.-H. Kim and S. W. Martin, *Chem. Mater.*, 2019, **31**, 3984–3991.
- 17 S. Banerjee, X. Zhang and L.-W. Wang, *Chem. Mater.*, 2019, **31**, 7265–7276.
- 18 S. Song, Z. Dong, F. Deng and N. Hu, Funct. Mater. Lett., 2018, 11, 1850039.
- 19 Y. A. Du and N. Holzwarth, J. Electrochem. Soc., 2007, 154, A999.
- 20 N. D. Lepley, N. A. W. Holzwarth and Y. A. Du, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2013, 88, 2991–3000.
- 21 N. D. Lepley and N. A. W. Holzwarth, J. Electrochem. Soc., 2012, 159, A538–A547.
- 22 K. Takada, N. Ohta, L. Zhang, X. Xu, B. T. Hang, T. Ohnishi, M. Osada and T. Sasaki, Solid State Ionics, 2012, 225, 594– 597
- 23 C. Wang, et al., Nano Energy, 2018, 53, 168-174.
- 24 B. R. Shin, Y. J. Nam, D. Y. Oh, D. H. Kim, J. W. Kim and Y. S. Jung, *Electrochim. Acta*, 2014, **146**, 395–402.
- 25 S. Wenzel, S. Randau, T. Leichtweiß, D. A. Weber, J. Sann, W. G. Zeier and J. Janek, *Chem. Mater.*, 2016, 28, 2400–2407.
- 26 X. He, Y. Zhu and Y. Mo, Nat. Commun., 2017, 8, 15893.
- 27 S. Shi, P. Lu, Z. Liu, Y. Qi, L. G. Hector, H. Li and S. J. Harris, J. Am. Chem. Soc., 2012, 134, 15476–15487.
- 28 Z. Zhang, Z. Zou, K. Kaup, R. Xiao, S. Shi, M. Avdeev, Y. S. Hu, D. Wang, B. He and H. Li, Adv. Energy Mater., 2019, 9, 1902373.
- 29 B. Zhang, L. Yang, L.-W. Wang and F. Pan, *Nano Energy*, 2019, **62**, 844–852.
- 30 B. Zhang, Z. Lin, H. Dong, L.-W. Wang and F. Pan, *J. Mater. Chem. A*, 2020, **8**, 342–348.
- 31 Y. Chen, E. Rangasamy, C. Liang and K. An, *Chem. Mater.*, 2015, 27, 5491–5494.
- 32 R. Jalem, M. J. D. Rushton, W. Manalastas, M. Nakayama, T. Kasuga, J. A. Kilner and R. W. Grimes, *Chem. Mater.*, 2015, 27, 2821–2831.
- 33 S. Adams and R. P. Rao, J. Mater. Chem., 2012, 22, 1426-1434.
- 34 S. Li, Z. Huang, Y. Xiao and C. Sun, *Mater. Chem. Front.*, 2021, 5, 5336–5343.
- 35 G. Kresse and J. Furthmüller, *Comput. Mater. Sci.*, 1996, **6**, 15–50.
- 36 P. E. Blöchl, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1994, **50**, 17953–17979.

- 37 G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, 54, 11169-11186.
- 38 J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, Phys. Rev. B: Condens. Matter Mater. Phys., 1992, 46, 6671-6687.
- 39 G. Henkelman, B. P. Uberuaga and H. Jónsson, J. Chem. Phys., 2000, 113, 9901-9904.
- 40 Z. Deng, Z. Zhu, I.-H. Chu and S. P. Ong, Chem. Mater., 2017, 29, 281-288.
- 41 F. Han, Y. Zhu, X. He, Y. Mo and C. Wang, Adv. Energy Mater., 2016, 6, 1501590.
- 42 Y. Zhu, X. He and Y. Mo, J. Mater. Chem. A, 2015, 4, 3253-
- 43 Y. Zhu, X. He and Y. Mo, ACS Appl. Mater. Interfaces, 2015, 7, 23685-23693.