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Superior cycling stability of H0.642V2O5·0.143H2O in rechargeable aqueous
zinc batteries
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Shunning Li, Qinghe Zhao* and Feng Pan*

ABSTRACT To increase the service life of rechargeable
batteries, transition metal oxide hosts with high structural
stability for the intercalation of carrier ions are important.
Herein, we reconstruct the crystal structure of a commercial
V2O5 by pre-intercalating H+ and H2O pillars using a facile
hydrothermal reaction and obtain a bi-layer structured
H0.642V2O5·0.143H2O (HVO) as an excellent host for aqueous
Zn-ion batteries. Benefiting from the structural reconstruc-
tion, the irreversible “layer-to-amorphous” phase evolution
during cycling is considerably less, resulting in ultra-high cy-
cling stability of HVO with nearly no capacity fading even
after 500 cycles at a current density of 0.5A g−1. Moreover, a
synthetic proton and Zn2+ intercalation mechanism in the
HVO host is demonstrated. This work provides both a facile
synthesis method for the preparation of V-based compounds
and a new viewpoint for achieving high-performance host
materials.

Keywords: aqueous battery, vanadium oxide, phase conversion,
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INTRODUCTION
Recently, rechargeable aqueous Zn-ion batteries (RAZBs) with
mild acid electrolytes have attracted considerable interest as
promising next-generation batteries because of their great
potential for high capacity delivery with lower cost and better
safety than Li-ion batteries [1,2]. However, their industrial
application is limited by issues in the Zn anode (corrosion,
dendrite, and side reactions) [3,4] and cathode materials
(capacity fading and sluggish reaction kinetics) such as MnO2
[5–7], V2O5 [8–10], and Prussian blue analogue [11,12]. To
increase the cycle life of the Zn anode, researchers have recently
developed certain optimization strategies such as tuning elec-
trolytes with additives [13], applying “water in salt” electrolytes
[14], organic/inorganic coating [15,16], and utilizing 3D current
collectors [17,18]. Furthermore, the electrochemical perfor-
mance of cathode materials has been improved using optimi-
zation methods such as metal substitution [19], coating with
conductive layers [20,21], applying pre-intercalation strategy
[22,23], and defect engineering [24,25]. Pre-intercalation engi-
neering provides a basic and effective insight for optimizing the
structure and correlated electrode performance of Mn- and V-
based host materials.

For V-based host materials, Yao et al. [26] emphasized the
important role of pre-intercalating ions/molecules for facilitat-
ing the electrode reactions in aqueous batteries, which display
multiple advantages for enhancing intrinsic conductivity, acti-
vating reaction sites, promoting diffusion kinetics, and stabiliz-
ing structural integrity. To date, considerable efforts have been
exerted to enhance the electrode performance of V2O5-based
cathode by pre-intercalating alkaline ions (Li+ [27], Na+ [28],
and K+ [29]), alkaline earth metal ions (Mg2+ [30], Ca2+ [31], and
Ba2+ [32]), conductive organic species (polyaniline [33], poly
(3,4-ethylenedioxythiophene) [34]), and structural water [35,36].
However, the structure variations because of pre-intercalating
ions and molecules during synthesis are rarely mentioned.
Although multiple high-performance V-based host materials
have been reported, the correlated optimization mechanism on
enhancing the cycling stability of V-based host materials is
rarely reported, which is detrimental for developing cathode
materials with high cycling stability.
In this study, we successfully developed the V2O5 structure by

pre-intercalating H+/H2O pillars with a facile hydrothermal
reaction using commercialized V2O5, acetone, diluted HNO3 as
reactants, and obtained a bi-layer structured H0.642V2O5·
0.143H2O (HVO) as a superior host material for aqueous Zn-ion
batteries. This structure reconstruction dramatically enhances
the cycling performance of the HVO electrode compared with
that of V2O5. During long-term cycling, this result may be
attributed to the depressed irreversible “layer-to-amorphous”
phase evolution. Consequently, compared with the pristine
V2O5, the HVO electrode has a considerably superior cycling
performance with almost no capacity fading in 500 cycles at a
rate current of ~0.5A g−1 for aqueous Zn-ion batteries.

EXPERIMENTAL SECTION

Synthesis of HVO materials
V2O5 (0.5456 g) was dissolved into 70mL of deionized water.
Then, 5mL of acetone and 2mL of 10% nitric acid were added
to the solution. After ultrasonication for 10min, the solution
was poured into a 100-mL Teflon-lined stainless-steel autoclave.
The autoclave was then sealed and heated in an oven at 180°C
for 24 h. The obtained green powder was filtered, washed with
deionized water and ethanol, and then vacuum dried at 80°C for
12 h.
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Material characterization
X-ray diffraction (XRD) patterns were obtained by a high-power
diffractometer (D9 Discover TXS Diffraction System) with a Cu
Kα (1.5418Å) radiation source. The morphology of these
materials was evaluated by scanning electron microscopy (SEM,
Carl ZEISS SUPRA 55) and transmission electron microscopy
(TEM, JEM-3200FS). The composition and chemical states were
evaluated by inductively coupled plasma optical emission spec-
trometry (ICP-OES, HORIBA Scientific JY 2000-2) and X-ray
photoelectron spectroscopy (XPS, Thermo Fisher ESCALAB
250Xi). The mass change during annealing was determined
through thermo-gravimetric analysis (TGA, TA instruments
TGA Q500/MS Discovery) under an air atmosphere with a
heating rate of 5°Cmin−1.

Electrochemical tests
The as-prepared HVO was mixed with acetylene black and
polyvinylidene fluoride with a weight ratio of 7:2:1 in N-methyl
pyrrolidone. Then, the homogeneous slurry was pasted on a Ti
foil with an average loading mass of 0.8–2mg cm−1 and then
dried in a vacuum oven at 110°C for 12 h. The prepared cathode
was assembled in CR2032-type coin cells with a 0.8-mm-thick
zinc plate anode, a glass fiber separator, and a 3mol L−1
Zn(CF3SO3)2 aqueous electrolyte under an ambient environ-
ment. Battery performance tests were performed by a NEWARE
battery tester (BTS-4000) for cycling stability and rate capability
in a cut-off voltage of 0.2–1.6V. Cyclic voltammetry (CV) was
performed in the potential range of 1.6–0.2 V using a CH
Instrument electrochemical workstation. Electrochemical impe-
dance spectroscopy was tested on the electrochemical work-
station over the frequency range of 100 kHz–0.1Hz. The
galvanostatic intermittent titration technique (GITT) was tested
by the MACCOR Model MC-16 Battery System with 10-min
discharging/charging and 30-min resting.

RESULTS AND DISCUSSION

Material characterization
HVO was synthesized by a facile hydrothermal reaction using
commercial V2O5, acetone, nitric acid, and H2O as reactants at
~180°C. During the hydrothermal reaction, V2O5 is reduced by
acetone, along with the breakage of V–O–V bonds and regen-
eration of bi-layered V–O sheets, as well as the subsequent
protonation with a certain amount of H+/H2O intercalating into
the interlayer space of HVO. This structure reconstruction has
minimal effect on the morphology of the products (Fig. S1).
Fig. 1a, b show the XRD patterns and the corresponding XRD
refinements of V2O5 and HVO materials, respectively. V2O5 is
assigned to the orthorhombic phase (ICDD No. 01-085-0601), in
which the VO5 pyramids are linked by sharing corners and edges
with each other, whereas HVO shows a bi-layered structure
(ICDD No. 00-025-1006), in which the pre-intercalated H+/H2O
resides in the interlayer space. This structural reconstruction
both expands the interlayer spacing and contributes to the
rearrangement of VO5 pentahedrons in HVO.
The chemical formula of HVO is confirmed using TGA in an

O2-containing atmosphere and differential scanning calorimetry
(DSC) (Fig. 1c). The TGA curve can be divided into four stages,
namely, the removal of the physically adsorbed H2O (stage I,
below ~132°C), the removal of crystal H2O (stage II, between
~132 and ~243°C), the removal of H2O from the decomposition
of V–O–H bonds of HVO (stage III, between ~243 and ~334°C),
and the weight gain because of the oxidation of vanadium oxide
(stage IV, above ~334°C), indicating the successful pre-inter-
calation of proton and H2O in HVO. Furthermore, DSC results
show a considerable exothermic peak at ~675°C, which can be
related to the melting of vanadium oxide.
In addition to the TGA results, the pre-intercalated H+ and

H2O in HVO can be identified by comparing the O 1s and V 2p

Figure 1 Material characterizations of V2O5 and HVO. XRD refinement of (a) V2O5, (b) HVO, and corresponding crystal structures (inset), (c) TGA/DSC
curves of HVO product in O2-containing atmosphere, comparison of (d) O 1s and (e) V 2p peaks of V2O5 and HVO, (f) HRTEM morphology and
corresponding diffraction pattern of HVO.
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peaks of V2O5 and HVO. Fig. 1d shows the characteristic peaks
of H–O–H, V–O–H, and V–O bonds [37], and the intensities of
V–O–H and H–O–H bonds in HVO are obviously larger than
that in V2O5. This result indicates that the proton and H2O are
successfully intercalated into the crystal structure of HVO in the
form of V–O–H bonds and structural water. Fig. 1e shows that
the relatively reduced valence value of V in HVO than that in
V2O5 is attributed to the H+ pre-intercalation. Furthermore, the
pre-intercalated H2O and protons can be confirmed by Fourier
transform infrared (FTIR) spectroscopy (Fig. S2a). The broad
and intense absorption peaks at about ~3368 and ~1601 cm−1

correspond to H–OH bending vibrations, and the absorption
peaks at ~1420 and ~981 cm−1 correspond to the –OH bending
vibrations combining with V ions in the lattice framework. The
existence of H2O can be identified by the Raman spectra, which
refer to the Raman shift value of ~1595 cm−1 (Fig. S2b).
High-resolution TEM (HRTEM) and correlated diffraction

were applied to investigate the crystal structures of V2O5 and
HVO. Fig. S3 provides the clear lattice fringes of (200) plane of
V2O5 with an interlayer spacing of ~5.84Å, and Fig. 1f shows the
lattice fringes of (600) plane of HVO with an interlayer spacing
of ~1.93Å, which are consistent with that of the XRD results.

Electrode performance
The cycling performances of V2O5 and HVO electrodes (at
500mAg−1) in aqueous Zn-ion batteries were operated in 2032
coin-type cells with Zn plate as the anode and 3mol L−1
Zn(CF3SO3)2 as the electrolyte. Fig. 2a shows a rapid increase in
the capacity delivery of the V2O5 electrode in the initial 55 cycles
(from 75 to 451mAh g−1, highlighted in yellow). This result is
primarily attributed to the electrochemical activation process.
Then, the capacity decreases dramatically in subsequent cycles,
showing poor cycling stability with violent fluctuations in cou-
lombic efficiency (CE). Fig. 2b shows the correlated galvano-

static charge/discharge (GCD) profiles at the 20th, 100th, 200th,
and 400th cycles, showing that the capacity delivery of V2O5
reduces to ~46mAh g−1 at the 400th cycle, which is an ultra-low
value for the capacity delivery of V-based compounds. This poor
cycling performance of commercial V2O5 has been previously
reported [38,39]. Fig. 2c shows the variation in median cell
voltages (MCVs) of V2O5 electrodes during charge and discharge
processes. The voltage polarization first reduces to a small value
of ~160mV after electrochemical activation, which is beneficial
for the capacity delivery of V2O5. However, it rapidly increases to
a very high value of ~945mV after 200 cycles, indicating the
sluggish reaction kinetics of the V2O5 electrode for long-term
cycling.
On the basis of the above results, a basic cognition can be

obtained. That is, although the structural evolution during
electrochemical activation promotes the capacity delivery of the
V2O5 electrode, the optimal structure is hard to maintain the
long-term cyclic insertion/extraction of H+/Zn2+ ions, which will
be discussed in a later part. However, for the HVO electrode, the
capacity remains nearly constant in 500 cycles, with a high
capacity retention of 98.6% and a high CE of nearly 100%
(Fig. 2d). Furthermore, the GCD curves at the 20th, 100th, 200th,
and 400th cycles coincide very well (Fig. 2e), indicating superior
cycling stability. Fig. 2f shows the constant MCVs of the HVO
electrode during the charge and discharge in 500 cycles, with a
well-maintained voltage polarization value of ~350mV. Fig. S4
provides the rate performance of HVO. The structure recon-
struction induced by pre-intercalating H+ and H2O does not
contribute significant advances in the capacity and rate perfor-
mances of the electrode, and its benefiting effect is primarily
focused on enhancing the cycling stability of the HVO electrode.
In general, the pre-intercalated crystal water can stabilize the

crystal structure of layered vanadium oxide via buffering the
electrostatic interactions and volumetric changes during charge/

Figure 2 Comparison of the cycling performances of V2O5 and HVO. Cycling performances of (a) V2O5 and (d) HVO electrodes at a rate current of
~500mAg−1. Comparison of charge/discharge profiles at the 20th, 100th, 200th, and 400th cycles of (b) V2O5 and (e) HVO electrodes. The corresponding MCV
variations during the charge/discharge processes of (c) V2O5 and (f) HVO electrodes.
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discharge cycles [35]. However, the effect of H+ intercalation is
rarely reported. The interlayer water in HVO is removed via
simply annealing at ~250°C for 2 h to obtain deep insights into
the effect of pre-intercalated H+ on the electrode performance.
The obtained product is denoted as HVO-250. Fig. S5 shows the
cycling performance of the HVO-250 electrode, which shows no
capacity fading in 300 cycles at a rate current of ~500mAg−1 and
high capacity retention of ~96% in 1200 cycles at a rate current
of ~2000mAg−1, indicating superior cycling stability. Moreover,
the enhanced rate performance of the HVO-250 electrode is
provided (Fig. S6). The results indicate that HVO-250 shows
slightly better capacity, rate, and cycling performances than
HVO. That is, a single H+ pre-intercalation can stabilize the
cycling stability of V-based host materials.

Depressed “layer-to-amorphous” phase evolution in the HVO
electrode
In general, the structural factors dominate the cycling stability of
host materials in aqueous batteries [40]. To clarify the stabilizing

mechanism, we compared the XRD patterns of V2O5 and HVO
at fully charged and discharged states of the 1st and 5th cycles
(Fig. S7). The pristine HVO electrode presents a reduced
interlayer spacing (~11.68Å, 2θ = 7.38°) because of the drying
process in a vacuum oven at ~110°C, and the structures of V2O5
and HVO are well maintained in the first five cycles. Fig. 3
shows the XRD and TEM comparisons of the V2O5 and HVO
electrodes during long-term cycles (the 50th, 150th, and 300th
cycles at a rate current of 500mAg−1). Fig. 3a shows the “layer-
to-amorphous” phase transition evolution of V2O5, in which the
V2O5 nanocrystal is obtained at the 50th cycle, with weak char-
acteristic peaks of the (204), (800), (024), and (620) planes of
V2O5. Moreover, it converts to a completely amorphous state
with no characteristic peaks of V2O5 at the 150th and 300th cycles.
Fig. 3b, c display the HRTEM morphology and corresponding

diffraction pattern of V2O5 after the 50th cycle, respectively. Its
features are similar to those of the amorphous phase with a clear
diffraction ring, i.e., in the nanocrystalline feature with multiple
nano-domains (Fig. S8). Considering the electrode performance,

Figure 3 Depressed “layer-to-amorphous” phase transition for the superior cycling performance of HVO. XRD patterns of (a) V2O5 and (d) HVO electrodes
at the 50th, 150th, and 300th cycles at 500mAg−1. (b, c) HRTEM morphologies and diffraction pattern of the V2O5 electrode at the 50th cycle. (g) XPS analysis of
O 1s peaks of HVO electrode at various cycles. HRTEM morphologies and diffraction patterns of HVO electrodes at the (e, f) 50th and (h, i) 300th cycles. Note:
all the electrodes are at charged state.
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we conclude that V2O5 in nanocrystal state, which is derived
from the electrochemical activation in the first 50 cycles, can
enhance the charge storage of carrier ions (i.e., H+/Zn2+),
whereas V2O5 in a completely amorphous state is detrimental for
the capacity delivery of the electrode. Thus, the enhanced
capacity of V2O5 in the first 55 cycles (Fig. 2a) is primarily
attributed to the generation of V2O5 nanocrystals, whereas the
subsequent rapid capacity fading can be attributed to the for-
mation of amorphous V2O5. The occurrence of amorphous
phases represents a structure collapse of V2O5 against the cyclic
H+/Zn2+ insertion/extraction process, which blocks the transport
channels for H+/Zn2+, and results in a rapid capacity fading.
Fig. 3d shows the structure evolution of HVO during cycling,

in which the bi-layered structure of HVO can be well maintained
in 300 cycles. Fig. 3e, f provide the HRTEM morphology and
corresponding diffraction pattern of HVO at the 50th cycle. The
diffraction spots feature a polycrystalline phase, which is well
maintained even after 300 cycles, as shown in Fig. 3h, i. These
results indicate that structure reconstruction in HVO can sta-
bilize the crystal structure against the cyclic H+/Zn2+ insertion/
extraction process, which enables high cycling stability. The pre-

intercalated H+ and H2O play an important role in stabilizing the
bi-layered structure of HVO, which remains unchanged during
the structure evolution of long-term cycling, as shown in Fig. 3g.
However, the intensity of H+/H2O in the V2O5 electrode greatly
changes (Fig. S9) because of the serious structure collapse in the
“layer-to-amorphous” phase evolution. Thus, H+/H2O pre-
intercalations act as stabilizing pillars to inhibit the “layer-to-
amorphous” phase transition in the HVO electrode, which is
responsible for the enhanced cycling stability.

Synthetic proton and Zn2+ intercalation mechanism
Because HVO is a promising host candidate for aqueous Zn-ion
batteries, we focus on its reaction mechanism. Fig. 4a, b show
the charge/discharge curves and corresponding XRD patterns of
the HVO electrode at different states. We observe a reversible
contraction/expansion of (002) plane during the discharge/
recharge process, and some by-products (2θ = 6.6°) appear/
diminish at the discharged/charged states. The corresponding
electrode morphologies are provided in Fig. 4c, d, which show
the reversible disappearance and generation of the by-products
upon cycling. SEM morphology and corresponding energy dis-

Figure 4 Charge storage mechanism of the HVO electrode. (a) Charge/discharge curves of the HVO electrode at a rate current of 0.1 A g−1, and
(b) corresponding XRD patterns at different states. SEM morphologies of the HVO electrode at (c) charged and (d) discharged states. Analysis of XPS peaks of
(e) O 1s and (f) Zn 2p at different states. TEM-EDS mapping results of HVO at the (g) charged and (h) discharged states. (i) Schematic of the synthetic
H+/Zn2+ intercalation mechanism of the HVO electrode.
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persive X-ray spectroscopy (EDS) analysis results (Fig. S10)
indicate that the by-product is composed of Zn, O, F, and S
elements. Combining XRD, SEM, and EDS results, we consider
that the by-product belongs to the zinc hydroxide tri-
fluoromethane-sulfonic hydrate (Znx(OH)y(CF3SO3)2x−y·nH2O),
which is solid evidence for the proton intercalation upon dis-
charge [41]. The H+ intercalation can be confirmed by the XPS
analysis of O 1s peaks in Fig. 4e. The intensity of V–O–H bonds
enhances upon discharge and reduces upon recharge processes,
showing a reversible intercalation/extraction of protons in the
HVO electrode.
We confirm the reversible Zn2+ intercalation/extraction in

HVO is from the following two aspects. First, XPS results
indicate that the intensity of Zn 2p peaks enhances upon dis-
charge and reduces upon charge, corresponding to the inter-
calation/extraction processes of Zn2+ in HVO (Fig. 4f). Second,
TEM-EDS mapping results show an obvious Zn enrichment in
the discharged HVO electrode, whereas, for the charged elec-
trode, the presence of Zn enrichment is relatively rare (Fig. 4g,
h). Thus, a synthetic proton and Zn2+ intercalation mechanism is
proposed in this work (Fig. 4i), which is accompanied by the
reversible contraction/expansion of interlayer spacing of the
HVO electrode. Concerning the discharging capacity of the 2nd
cycle of HVO and using ICP spectrometry, we calculate the
reaction equation of the HVO electrode during the discharging/
charging process as follows:

x y
x y

H Zn V O H O+1.59H +0.13Zn + H O+1.85e
H Zn V O ( + )H O.

(1)0.10 0.27 2 5 2
+ 2+

2

1.69 0.40 2 5 2

As demonstrated in Equation (1), the proton and Zn2+

insertions contribute ~85.9% and ~14.1% of the capacity deliv-
ery, respectively. Proton insertion dominates the capacity
delivery of HVO. The proton displays a smaller ion radius and
charge density compared with Zn2+. HVO exhibits excellent
diffusion kinetics, benefiting the rate performance of HVO in
Fig. S4. We conducted the CV curves of HVO at different
scanning rates (Fig. S11). The results indicate that all the cal-
culated b values of oxidative/reductive peaks are close to 1,
demonstrating the dominating role of pseudo-capacitive diffu-
sion in capacity delivery. The contribution of pseudo-capacitive
diffusion on capacity delivery is as high as 92.4%, illustrating the
dominant role of pseudo-capacitive diffusions. Furthermore, the
corresponding average diffusion coefficients, calculated by GITT
(Fig. S12), are shown as ~2.14 ×10−10 and ~2.99 × 10−10 cm2 s−1
for the discharge and charge processes of the HVO electrode,
respectively, which is among the highest diffusion kinetics of V-
based cathode materials (Table S1).

CONCLUSION
We successfully synthesized an H+ and H2O pre-intercalated
HVO through a facile hydrothermal reaction. Compared with
pristine V2O5, HVO presents considerably higher cycling stabi-
lity mainly because of its tough structure optimized by H+ and
H2O pre-intercalations. The bi-layered structure of HVO can
maintain well even after 300 cycles at 500mAg−1. Moreover, we
reveal the proton and Zn2+ co-intercalation reaction mechanism
of HVO for aqueous Zn-ion batteries in which proton insertion
dominates the electrode reaction and enables high reaction
kinetics. This work presents a new viewpoint for designing next-
generation high-performance cathode materials for aqueous

batteries.
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水系可充锌电池中H0.642V2O5·0.143H2O正极的高循
环稳定性机制研究
王乐涛, 陈传玺, 任恒宇, 秦润之, 易浩聪, 丁收香, 李洋, 姚路,
李舜宁, 赵庆贺*, 潘锋*

摘要 水系可充电池中过渡金属氧化物宿主材料的循环稳定性是影响
其长时间服役性能的关键. 本文通过简单的预嵌入方法, 将一定量的质
子和水分子预嵌入到V2O5晶格中, 重构了晶体结构, 获得了高性能水系
锌电池中的H0.642V2O5·0.143H2O(HVO)层状正极材料. 得益于该结构重
构, 钒氧化物正极循环过程中的“层状/非晶”结构演化过程被抑制, 由此
获得极高循环稳定性(在0.5 A g−1电流密度下循环500圈几乎无衰减). 此
外, 该研究报道了HVO正极中质子和锌离子协同嵌入的储能机制, 为下
一代高性能钒基正极材料的设计提供了一种新的理念.
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