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semantic knowledge base for describing 
concepts and their physical relationships 
in a symbolic form, knowledge graph is 
expected to enable researchers to retrieve 
the interrelated data, such as the chemical 
names and their extracted features, in an 
automatic fashion.[4] More importantly, 
by integrating the historical track record 
of the deductive logic in past publica-
tions, knowledge graph may even facilitate 
future discovery of advanced materials that 
are hidden in the literature from different 
domains.[1b] Hence, we are optimistic that 
the application of knowledge graph tech-
niques to materials science can open up 
new opportunities for fast extracting and 
handling of large-scale information for the 
materials research community.

In a knowledge graph, the constituent 
units are the “entity-relationship-entity” 
triads, in which the entity and its related 
attribute-value pairs are connected by 

relationships to form a network of knowledge structures. 
Accordingly, a knowledge graph could only be constructed on 
the premise that clear identification of both the subject (e.g., 
author) and the object (e.g., material) is achieved. Figure  1 
illustrates what a materials knowledge graph consists of. We 
would like to note that, due to the enormity and complexity of 
published literature, it is a laborious task to disambiguate the 
authors by manual methods. Especially, the information about 
the authors could change during their carrier. In the field of 
materials science, previous studies on the data mining of scien-
tific literature mainly emphasized on the retrieval of informa-
tion regarding the object,[1] while research in disambiguation 
of the subject is scarce. By harnessing the recent technological 
advancements in artificial intelligence and database technolo-
gies, we are in a better position to develop novel disambigua-
tion method for the construction of a consolidated knowledge 
graph for materials science.

In this work, machine learning (ML) and matching depend-
encies (MD)[5] are combined to construct a deduplication model 
for the disambiguation of authors in scientific articles. Based 
on the literature database and taking LiFePO4 as an example, 
a knowledge graph, which we call MatKG, is constructed and 
employed to shape the evolution of scientific knowledge on 
materials. The unique correspondence between subjects and 
objects is established for the first time in the field of materials 
science, thus permitting automatic tracking of research trends 

Due to the recent innovations in computer technology, the emerging field 
of materials informatics has now become a catalyst for a revolution of the 
research paradigm in materials science. Knowledge graphs, which pro-
vide support for knowledge management, are able to collectively capture 
the scientific knowledge from the vast collection of research articles and 
accomplish the automatic recognition of the relationships between entities. 
In this work, a materials knowledge graph, named MatKG, is constructed, 
which establishes a unique correspondence between subjects and objects 
in the materials science area. An emphasis is placed on the disambiguation 
of authors, addressed by a deduplication model based on machine learning 
and matching dependencies algorithms. Specifically, MatKG is applied to 
perform tracking on research trends in the study of LiFePO4 and to auto-
matically chronicle the milestones achieved so far. It is believed that MatKG 
can serve as a versatile research platform for amalgamating and refining the 
scientific knowledge of materials in a variety of subfields and intersectional 
domains.
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Data mining of published works has emerged from the field of 
computer science and recently found its place in the research 
of materials science.[1] In contrast to the structural information 
that has been stored in several well-established materials data-
bases,[2] the scientific knowledge scattered in publications in the 
form of text is still, up to now, gathered and analyzed manually 
by individual researchers, which is generally time-consuming 
and far from complete. Computer-automated analysis of mate-
rials science knowledge in the literature can help elucidate the 
collective association between different scientific articles, and 
would therefore greatly advance our macroscopic and com-
prehensive understanding of the evolution of scientific knowl-
edge. “Knowledge graph”, first proposed by Google in 2012 for 
search engines, is critical for the construction of such materials 
knowledge network.[3] However, the application of knowledge 
graph in material science is still in its infancy. As a structured 
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and milestones. The proposed information-to-knowledge 
research route can not only expedite the development of known 
materials for different applications but also reform the path and 
paradigm of materials research which will accelerate the dis-
covery of novel materials.

The construction of MatKG starts from data collection of 
research articles and author information. More than 2.9 million 
articles, as well as their author information, are collected in 
the field of materials science through the application program-
ming interfaces of Elsevier’s Scopus, Science Direct, and Web 
of Science. Over 1.05 million records of author information are 
gathered, including the author’s first name (FN), last name (LN), 
Open Researcher and Contributor ID (ORCID), email, and affili-
ation. We also extract the semantic information from the titles, 
abstracts, and keywords of the articles for author deduplication.

It is worth noting that most of the author information is 
incomplete, which prevents us from reliably differentiating one 
author from the other. This leads to duplicates or ambiguity of 
the subject in the constructed knowledge graph. Here, we take 
the name “Jun Li” as an example. In Table 1, t1, t2, and t3 are dis-
tinguished as three different authors in the database, due to the 
difference in either FN or affiliation. The acronym “J.” cannot 
be automatically correlated with “Jun”, but in fact, t1 and t2 rep-
resent the same author. Even more striking is the case where all 
the FNs, LNs, and affiliation names are different, as exemplified 
by t4 and t5 in Table 1, which can confuse a person without con-
text information. By tracing the biography of the author known 
as “Barner-Kowollik”, we can find that t4 and t5 correspond to 
the same person. Since the discrepancies in author information 
will result in redundancy and uncertainty of the database, the 

identification and fusion of database records that belong to the 
same author would be a prerequisite for constructing a mate-
rials knowledge graph. This data cleaning task can be done by a 
deduplication model incorporating the information in the titles, 
abstracts, and keywords of the corresponding articles.

The flowchart of the construction of MatKG is presented 
in Figure  2. Four modules are designed in this framework:  
ML-based pre-training (module I), MD-based collective blocking 
(module II), ML-based classification (module III), and breadth-
first search (module IV). Modules I, II, and III correspond to 
the deduplication process, in which the integration of ML and 
MD methods can enable fast and highly-accurate detection of 
the duplicate records.

In module I, a widely-used ML approach, Naïve Bayes Clas-
sifier, is employed for pre-training the original records. The 
algorithm is based on Bayes’ theorem with the assumption that 
all attributes are independent given the value of the class vari-
able. It is more suitable than other common ML classification 
algorithms when dealing with text information (Figure S1, Sup-
porting Information).[6] In this stage, the authors are classified 
into several major areas according to the information in the 
abstract. Only the first 60 words instead of the full text of the 
abstract are taken into account, which can result in better clas-
sification performance (Figure S2, Supporting Information).[7]

In module II, an MD-based collective blocking is performed 
to split the database records into blocks. MD plays the role of 
a declarative logical rule for evaluating the similarity between 
two records, not only by their own information (e.g., FN, LN) 
but also by the semantic relational information contained in the 
titles and keywords of the articles. It means that if two article 
records are placed in the same block, the corresponding records 
of authors with similar names should be stored in the same 
block as well. Then, we only need to compare the records in the 
same block during the following deduplication, while any two 
records in different blocks are regarded as non-duplicates.

In module III, Naïve Bayes Classifier is utilized again for 
duplication detection in each block, with the information in 
titles, abstracts, and keywords taken into consideration. The 
probability of two author records referring to the same person 
is computed, and a threshold of 90% is set, above which the 
pair of records are merged into a single one. This module pro-
duces a duplicate-free database consisting of around 0.63 mil-
lion records of author information.

The efficiency of a knowledge graph depends on the speed 
of resource discovery, which can be tackled by a breadth-first 
search algorithm (module IV). CTANE,[8] a level-wise algorithm 
based on the well-known functional dependencies mining 
method TANE,[9] can effectively accomplish the search task. 
In order to reduce the time complexity and cope with the 
increasing amount of data, a pruning algorithm is carried out 
during the CTANE. The candidate set, that is, the search space, 
is pruned, which yields a large leap in the search speed. The 
improved algorithm is named Pruned-CTANE. After the search 
procedure, a knowledge graph is constructed, with the authors 
and the research fields constituting the logical starting points 
for the inquiry into the literature.

The advantages of pre-training and pruning strategies in 
search speed and information retrieval quality are demon-
strated in Figure  3. To test the search speed, four different 

Figure 1.  Structure of a materials knowledge graph.

Table 1.  Examples of author records in the database.

FN LN ORCID Affiliation

t1 J. Li Null Shanghai Jiao Tong University

t2 Jun Li Null School of Materials Science 
and Engineering, Shanghai 

Jiao Tong University

t3 Jun Li Null Sichuan University

t4 Christopher Barner-Kowollik 0000-0002-6745-
0570

Karlsruhe Institute of 
Technology

t5 C. Kowollik Null University of Göttingen
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frequency situations are examined (Figure  3a). Here, the fre-
quency is in inverse proportion to the number of candidate sets 
in each layer of the search process. The smaller the frequency, 
the larger the number of candidate sets in each layer will be. 
It is shown that for all frequencies, the pruning strategy can 
shorten the search time by more than two-thirds when taking 
the traditional CTANE algorithm as a reference. On the other 
hand, the quality of information retrieval can be evaluated by 
metrics including precision and recall, which are shown in 
Figure  3b. Cora dataset[10] is used for test, and the calculation 
details are given in Supporting Information. Higher precision 
means that more candidate duplicate record-pairs are true, 
while higher recall means that more true candidate record-pairs 
have been found. We can see that a single ML or MD model 
with both precision and recall above 50% is practically beyond 
attainment. Apparently, the method using either ML or MD 
alone could hardly meet the requirements for author disam-
biguation. The ERBlox project,[11] a recently proposed technique 

combining ML and MD for entity resolution, performs quite 
well but at a higher cost of computational time and resource 
than the disambiguation model in this work. It is worth empha-
sizing that the performance of MatKG, with a precision of 89% 
and a recall of 93%, is even better than that of ERBlox. There-
fore, the proposed pre-training and pruning strategies can not 
only dramatically outperform the traditional methods in accel-
erating the search process, but also accurately capture the sub-
ject–object relationship that guarantees the successful construc-
tion of materials knowledge graph in the present work.

We take LiFePO4 as a case example to illustrate how the 
MatKG is employed for mapping the evolution and develop-
ment of LiFePO4 in the field of lithium-ion batteries (LIBs). In 
1997, John B. Goodenough pointed out in his article that the 
olivine phosphate, LiFePO4, can be used as a cathode material 
for rechargeable LIBs.[12] Since then, numerous researchers 
have contributed to the study of LiFePO4 due to its stable cycle 
performance, low cost, resource abundance, and environmental 

Figure 2.  The flowchart of the construction of MatKG.

Figure 3.  The evaluation of search speed and information retrieval quality for MatKG. a) Comparison between Pruned-CTANE and CTANE algorithms 
on search time. b) Comparison of precision and recall among single ML model, single MD model, ERBlox, and MatKG using Cora dataset.
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benignity. Building on the efforts made in the past decades, 
LiFePO4 cathodes have been successfully commercialized and 
become one of the most reliable cathodes regarding safety 
issues. Using MatKG, we can unambiguously list the authors 
belonging to this field and associate the related articles to each 
author in an automatic framework.

First, the word “LiFePO4” and other names such as “LFP” 
and “lithium iron phosphate” are selected as the starting points 
for inquiry. We notice that most of the early works on LiFePO4 
focused on the crystal structure[13] and physicochemical proper-
ties, including the magnetism,[14] magnetoelectric effect,[15] vibra-
tional interactions,[16] and electron density distribution.[17] By 
further appending the search term “LIBs” as well as its equiva-
lents into the inquiry, the search results would be more relevant 
to LiFePO4 as a cathode material for LIBs. Then, with the estab-
lished knowledge graph, the authors are accurately distinguished 
according to the interlinked articles. With the aid of the citation 
information in the article database, a milestone map for LiFePO4 
research and development is obtained, as depicted in Figure 4.

It is noteworthy that the corresponding authors of the 
research articles are generally the main contributor, and there-
fore they are chosen as the representative of the authors for 
each article. In Figure 4, a timeline is drawn, along which the 
size of the circles denotes the impact of the corresponding arti-
cles on the works of other authors. Larger circle would suggest 
a greater contribution of the author to the research trend in this 
field. For clarity and ease of presentation, only articles with over 
600 citations are shown. We find that the first two works come 
from A. K. Padhi in 1997,[12,18] but after a careful inspection, we 
realize that these works are actually from John B. Goodenough 
mentioned above. Therefore, they are isolated cases where 
the corresponding author is not selected as the representa-
tive. Moreover, it is noticed that the author LN “Goodenough” 

appears in other research fields, and there are several affilia-
tions associated with this LN, including University of Texas at 
Austin, University of Reading, University of Oxford, Massachu-
setts Institute of Technology, etc. MatKG can efficiently distin-
guish the authors with the same LN and merge all the duplicate 
information, as shown in Table  2. In Table  2, s1–s5 represent 
five author records in the database, and “Group A/B/C” rep-
resents the classification results. The identification of authors 
tabulated in Table  1 is also solved. These results allow us to 
employ this knowledge graph for the automatic examination of 
correlations between scientific advancements.

In the MatKG graph, the accessed information of research 
discoveries in LiFePO4 is summarized as follows: The research 
in discharge capacity, electrode preparation, and Li intercalation 
mechanism of LiFePO4 emerged from 1997.[12,18] In 2001, a specific 
capacity approaching the theoretical value was achieved at room 
temperature, and LiFePO4/C composite was found to exhibit 
very good rate capability, excellent stability, and high theoretical 
capacity.[19] In 2002, the influence of carbon content in LiFePO4/C 
composite electrode was evaluated,[20] while other studies focused 
on Li intercalation mechanism of LiFePO4 and the electronic 
conductivity.[21] In 2004, researchers focused more on improving 
the electronic conductivity.[22] Later on, atomic-scale investigation 
and nanostructure design were popular.[23] It can be seen that the 
scientific knowledge in a subfield that was only known by spe-
cialized experts in the past, can be programmatically codified 
via materials informatics, thus facilitating rapid identification 
of research trends. In this regard, we envision MatKG to be a 
promising platform for amalgamating and refining the scientific 
knowledge in various materials science domains.

In summary, we have shown that by leveraging the knowl-
edge from data mining and artificial intelligence, it is possible to 
construct a materials knowledge graph as an infrastructure for 
easy access to research findings in materials science. We intro-
duce MatKG as a research platform for systematically codifying 
the scientific knowledge documented in research publications. 
A million-scale database containing research articles and author 
information in the field of materials science is implemented. 
Author disambiguation, as one of the major obstacles in the 
construction of knowledge graph, has been addressed through 
a combination of ML and MD models. The utility of MatKG is 
exemplified by the automatic generation of a milestone map 
for the investigation of LiFePO4, which can enable rapid and 
unbiased tracking of the current trends in the academia for 

Figure 4.  The milestone map of LiFePO4 development for LIBs.

Table 2.  Identification of “John B. Goodenough” from the author 
records with an LN of “Goodenough”.

Author name Affiliation Group

s1 John B. Goodenough University of Texas at Austin A

s2 J. B. Goodenough Massachusetts Institute of Technology A

s3 John Goodenough University of Oxford A

s4 Daniel A. Goodenough Harvard Medical School B

s5 Peter W. Goodenough University of Reading C

Adv. Energy Mater. 2021, 11, 2003580
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researchers in different fields. We anticipate that a predictive 
system based on MatKG can be obtained by incorporating more 
information on materials properties, and this functionality will 
open up a new paradigm of materials discovery and design.
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