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Construction and Application of Materials Knowledge
Graph Based on Author Disambiguation: Revisiting the

Evolution of LiFePO,

Zhiwei Nie, Yuanji Liu, Luyi Yang, Shunning Li,* and Feng Pan*

Due to the recent innovations in computer technology, the emerging field
of materials informatics has now become a catalyst for a revolution of the
research paradigm in materials science. Knowledge graphs, which pro-
vide support for knowledge management, are able to collectively capture
the scientific knowledge from the vast collection of research articles and
accomplish the automatic recognition of the relationships between entities.
In this work, a materials knowledge graph, named MatKG, is constructed,
which establishes a unique correspondence between subjects and objects
in the materials science area. An emphasis is placed on the disambiguation
of authors, addressed by a deduplication model based on machine learning
and matching dependencies algorithms. Specifically, MatKG is applied to
perform tracking on research trends in the study of LiFePO, and to auto-
matically chronicle the milestones achieved so far. It is believed that MatKG
can serve as a versatile research platform for amalgamating and refining the
scientific knowledge of materials in a variety of subfields and intersectional

semantic knowledge base for describing
concepts and their physical relationships
in a symbolic form, knowledge graph is
expected to enable researchers to retrieve
the interrelated data, such as the chemical
names and their extracted features, in an
automatic fashion.! More importantly,
by integrating the historical track record
of the deductive logic in past publica-
tions, knowledge graph may even facilitate
future discovery of advanced materials that
are hidden in the literature from different
domains.!™™ Hence, we are optimistic that
the application of knowledge graph tech-
niques to materials science can open up
new opportunities for fast extracting and
handling of large-scale information for the
materials research community.

domains.

Data mining of published works has emerged from the field of
computer science and recently found its place in the research
of materials science.l!! In contrast to the structural information
that has been stored in several well-established materials data-
bases,?! the scientific knowledge scattered in publications in the
form of text is still, up to now, gathered and analyzed manually
by individual researchers, which is generally time-consuming
and far from complete. Computer-automated analysis of mate-
rials science knowledge in the literature can help elucidate the
collective association between different scientific articles, and
would therefore greatly advance our macroscopic and com-
prehensive understanding of the evolution of scientific knowl-
edge. “Knowledge graph”, first proposed by Google in 2012 for
search engines, is critical for the construction of such materials
knowledge network.’l However, the application of knowledge
graph in material science is still in its infancy. As a structured
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In a knowledge graph, the constituent
units are the “entity-relationship-entity”
triads, in which the entity and its related
attribute-value pairs are connected by
relationships to form a network of knowledge structures.
Accordingly, a knowledge graph could only be constructed on
the premise that clear identification of both the subject (e.g.,
author) and the object (e.g., material) is achieved. Figure 1
illustrates what a materials knowledge graph consists of. We
would like to note that, due to the enormity and complexity of
published literature, it is a laborious task to disambiguate the
authors by manual methods. Especially, the information about
the authors could change during their carrier. In the field of
materials science, previous studies on the data mining of scien-
tific literature mainly emphasized on the retrieval of informa-
tion regarding the object,)) while research in disambiguation
of the subject is scarce. By harnessing the recent technological
advancements in artificial intelligence and database technolo-
gies, we are in a better position to develop novel disambigua-
tion method for the construction of a consolidated knowledge
graph for materials science.

In this work, machine learning (ML) and matching depend-
encies (MD)P! are combined to construct a deduplication model
for the disambiguation of authors in scientific articles. Based
on the literature database and taking LiFePO, as an example,
a knowledge graph, which we call MatKG, is constructed and
employed to shape the evolution of scientific knowledge on
materials. The unique correspondence between subjects and
objects is established for the first time in the field of materials
science, thus permitting automatic tracking of research trends

© 2021 Wiley-VCH GmbH
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Figure 1. Structure of a materials knowledge graph.

and milestones. The proposed information-to-knowledge
research route can not only expedite the development of known
materials for different applications but also reform the path and
paradigm of materials research which will accelerate the dis-
covery of novel materials.

The construction of MatKG starts from data collection of
research articles and author information. More than 2.9 million
articles, as well as their author information, are collected in
the field of materials science through the application program-
ming interfaces of Elsevier's Scopus, Science Direct, and Web
of Science. Over 1.05 million records of author information are
gathered, including the author’s first name (FN), last name (LN),
Open Researcher and Contributor ID (ORCID), email, and affili-
ation. We also extract the semantic information from the titles,
abstracts, and keywords of the articles for author deduplication.

It is worth noting that most of the author information is
incomplete, which prevents us from reliably differentiating one
author from the other. This leads to duplicates or ambiguity of
the subject in the constructed knowledge graph. Here, we take
the name “Jun Li” as an example. In Table 1, ¢, t,, and t; are dis-
tinguished as three different authors in the database, due to the
difference in either FN or affiliation. The acronym “J.” cannot
be automatically correlated with “Jun”, but in fact, ¢; and t, rep-
resent the same author. Even more striking is the case where all
the FNs, LNs, and affiliation names are different, as exemplified
by t, and t5 in Table 1, which can confuse a person without con-
text information. By tracing the biography of the author known
as “Barner-Kowollik”, we can find that t, and ts5 correspond to
the same person. Since the discrepancies in author information
will result in redundancy and uncertainty of the database, the

Table 1. Examples of author records in the database.

FN LN ORCID Affiliation

t ). Li Null Shanghai Jiao Tong University

t, Jun Li Null School of Materials Science
and Engineering, Shanghai

Jiao Tong University
t3 Jun Li Null Sichuan University
t,  Christopher Barner-Kowollik 0000-0002-6745- Karlsruhe Institute of
0570 Technology
ts C. Kowollik Null University of Géttingen
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identification and fusion of database records that belong to the
same author would be a prerequisite for constructing a mate-
rials knowledge graph. This data cleaning task can be done by a
deduplication model incorporating the information in the titles,
abstracts, and keywords of the corresponding articles.

The flowchart of the construction of MatKG is presented
in Figure 2. Four modules are designed in this framework:
ML-based pre-training (module I), MD-based collective blocking
(module II), ML-based classification (module III), and breadth-
first search (module IV). Modules I, II, and III correspond to
the deduplication process, in which the integration of ML and
MD methods can enable fast and highly-accurate detection of
the duplicate records.

In module I, a widely-used ML approach, Naive Bayes Clas-
sifier, is employed for pre-training the original records. The
algorithm is based on Bayes’ theorem with the assumption that
all attributes are independent given the value of the class vari-
able. It is more suitable than other common ML classification
algorithms when dealing with text information (Figure S1, Sup-
porting Information).l®! In this stage, the authors are classified
into several major areas according to the information in the
abstract. Only the first 60 words instead of the full text of the
abstract are taken into account, which can result in better clas-
sification performance (Figure S2, Supporting Information).”!

In module II, an MD-based collective blocking is performed
to split the database records into blocks. MD plays the role of
a declarative logical rule for evaluating the similarity between
two records, not only by their own information (e.g., FN, LN)
but also by the semantic relational information contained in the
titles and keywords of the articles. It means that if two article
records are placed in the same block, the corresponding records
of authors with similar names should be stored in the same
block as well. Then, we only need to compare the records in the
same block during the following deduplication, while any two
records in different blocks are regarded as non-duplicates.

In module III, Naive Bayes Classifier is utilized again for
duplication detection in each block, with the information in
titles, abstracts, and keywords taken into consideration. The
probability of two author records referring to the same person
is computed, and a threshold of 90% is set, above which the
pair of records are merged into a single one. This module pro-
duces a duplicate-free database consisting of around 0.63 mil-
lion records of author information.

The efficiency of a knowledge graph depends on the speed
of resource discovery, which can be tackled by a breadth-first
search algorithm (module 1V). CTANE,® a level-wise algorithm
based on the well-known functional dependencies mining
method TANE,l can effectively accomplish the search task.
In order to reduce the time complexity and cope with the
increasing amount of data, a pruning algorithm is carried out
during the CTANE. The candidate set, that is, the search space,
is pruned, which yields a large leap in the search speed. The
improved algorithm is named Pruned-CTANE. After the search
procedure, a knowledge graph is constructed, with the authors
and the research fields constituting the logical starting points
for the inquiry into the literature.

The advantages of pre-training and pruning strategies in
search speed and information retrieval quality are demon-
strated in Figure 3. To test the search speed, four different

© 2021 Wiley-VCH GmbH
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Figure 2. The flowchart of the construction of MatKG.

frequency situations are examined (Figure 3a). Here, the fre-
quency is in inverse proportion to the number of candidate sets
in each layer of the search process. The smaller the frequency,
the larger the number of candidate sets in each layer will be.
It is shown that for all frequencies, the pruning strategy can
shorten the search time by more than two-thirds when taking
the traditional CTANE algorithm as a reference. On the other
hand, the quality of information retrieval can be evaluated by
metrics including precision and recall, which are shown in
Figure 3b. Cora dataset!!’! is used for test, and the calculation
details are given in Supporting Information. Higher precision
means that more candidate duplicate record-pairs are true,
while higher recall means that more true candidate record-pairs
have been found. We can see that a single ML or MD model
with both precision and recall above 50% is practically beyond
attainment. Apparently, the method using either ML or MD
alone could hardly meet the requirements for author disam-
biguation. The ERBlox project,'!l a recently proposed technique

Merging

| Matching dependencies

&

]
B ©
v

Naive Bayes

cmoel- ¢
o

Classifier

Module IlI: Classification

combining ML and MD for entity resolution, performs quite
well but at a higher cost of computational time and resource
than the disambiguation model in this work. It is worth empha-
sizing that the performance of MatKG, with a precision of 89%
and a recall of 93%, is even better than that of ERBlox. There-
fore, the proposed pre-training and pruning strategies can not
only dramatically outperform the traditional methods in accel-
erating the search process, but also accurately capture the sub-
ject—object relationship that guarantees the successful construc-
tion of materials knowledge graph in the present work.

We take LiFePO, as a case example to illustrate how the
MatKG is employed for mapping the evolution and develop-
ment of LiFePO, in the field of lithium-ion batteries (LIBs). In
1997, John B. Goodenough pointed out in his article that the
olivine phosphate, LiFePO,, can be used as a cathode material
for rechargeable LIBs.'” Since then, numerous researchers
have contributed to the study of LiFePO, due to its stable cycle
performance, low cost, resource abundance, and environmental

(a) 280 (b)100
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Figure 3. The evaluation of search speed and information retrieval quality for MatKG. a) Comparison between Pruned-CTANE and CTANE algorithms
on search time. b) Comparison of precision and recall among single ML model, single MD model, ERBlox, and MatKG using Cora dataset.
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Figure 4. The milestone map of LiFePO, development for LIBs.

benignity. Building on the efforts made in the past decades,
LiFePO, cathodes have been successfully commercialized and
become one of the most reliable cathodes regarding safety
issues. Using MatKG, we can unambiguously list the authors
belonging to this field and associate the related articles to each
author in an automatic framework.

First, the word “LiFePO,” and other names such as “LFP”
and “lithium iron phosphate” are selected as the starting points
for inquiry. We notice that most of the early works on LiFePO,
focused on the crystal structurel’3! and physicochemical proper-
ties, including the magnetism, magnetoelectric effect,™! vibra-
tional interactions,'® and electron density distribution.”] By
further appending the search term “LIBs” as well as its equiva-
lents into the inquiry, the search results would be more relevant
to LiFePOy as a cathode material for LIBs. Then, with the estab-
lished knowledge graph, the authors are accurately distinguished
according to the interlinked articles. With the aid of the citation
information in the article database, a milestone map for LiFePO,
research and development is obtained, as depicted in Figure 4.

It is noteworthy that the corresponding authors of the
research articles are generally the main contributor, and there-
fore they are chosen as the representative of the authors for
each article. In Figure 4, a timeline is drawn, along which the
size of the circles denotes the impact of the corresponding arti-
cles on the works of other authors. Larger circle would suggest
a greater contribution of the author to the research trend in this
field. For clarity and ease of presentation, only articles with over
600 citations are shown. We find that the first two works come
from A. K. Padhi in 1997,1218] but after a careful inspection, we
realize that these works are actually from John B. Goodenough
mentioned above. Therefore, they are isolated cases where
the corresponding author is not selected as the representa-
tive. Moreover, it is noticed that the author LN “Goodenough”

Table 2. Identification of “John B. Goodenough” from the author
records with an LN of “Goodenough”.

/ YamadaA  ChiangYM | lslamMS  ZhouHS
\

NazarLF ~ DahnJR Morgan D

Author name Affiliation Group
S John B. Goodenough University of Texas at Austin A
sy J. B. Goodenough Massachusetts Institute of Technology A
s3 John Goodenough University of Oxford A
Sy Daniel A. Goodenough Harvard Medical School B
S5 Peter W. Goodenough University of Reading C
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appears in other research fields, and there are several affilia-
tions associated with this LN, including University of Texas at
Austin, University of Reading, University of Oxford, Massachu-
setts Institute of Technology, etc. MatKG can efficiently distin-
guish the authors with the same LN and merge all the duplicate
information, as shown in Table 2. In Table 2, s;-ss represent
five author records in the database, and “Group A/B/C” rep-
resents the classification results. The identification of authors
tabulated in Table 1 is also solved. These results allow us to
employ this knowledge graph for the automatic examination of
correlations between scientific advancements.

In the MatKG graph, the accessed information of research
discoveries in LiFePO, is summarized as follows: The research
in discharge capacity, electrode preparation, and Li intercalation
mechanism of LiFePO, emerged from 199711218 In 2001, a specific
capacity approaching the theoretical value was achieved at room
temperature, and LiFePO,/C composite was found to exhibit
very good rate capability, excellent stability, and high theoretical
capacity.'” In 2002, the influence of carbon content in LiFePO,/C
composite electrode was evaluated,?” while other studies focused
on Li intercalation mechanism of LiFePO, and the electronic
conductivity.!l In 2004, researchers focused more on improving
the electronic conductivity.??! Later on, atomic-scale investigation
and nanostructure design were popular.?®! It can be seen that the
scientific knowledge in a subfield that was only known by spe-
cialized experts in the past, can be programmatically codified
via materials informatics, thus facilitating rapid identification
of research trends. In this regard, we envision MatKG to be a
promising platform for amalgamating and refining the scientific
knowledge in various materials science domains.

In summary, we have shown that by leveraging the knowl-
edge from data mining and artificial intelligence, it is possible to
construct a materials knowledge graph as an infrastructure for
easy access to research findings in materials science. We intro-
duce MatKG as a research platform for systematically codifying
the scientific knowledge documented in research publications.
A million-scale database containing research articles and author
information in the field of materials science is implemented.
Author disambiguation, as one of the major obstacles in the
construction of knowledge graph, has been addressed through
a combination of ML and MD models. The utility of MatKG is
exemplified by the automatic generation of a milestone map
for the investigation of LiFePO,, which can enable rapid and
unbiased tracking of the current trends in the academia for
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researchers in different fields. We anticipate that a predictive
system based on MatKG can be obtained by incorporating more
information on materials properties, and this functionality will
open up a new paradigm of materials discovery and design.

Supporting Information

Supporting Information is available from the Wiley Online Library or
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