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CONSPECTUS: Silicon-based anode materials have become a research hot spot as Electronic

the most promising candidates for next-generation high-capacity lithium-ion b conductivity
batteries. However, the irreversible degradation of the conductive network in the

anode and the resultant dramatic capacity loss have become two ultimate challenges ¢

that stem from inherent characteristics of the Si-based materials, including poor
conductivity and massive volume changes (up to 300%) during cycling. Apart from
optimization of the active materials, one effective way to stabilize high-capacity Si-
based anodes is by designing polymeric binders to reinforce the conductive networks
during repeated charge and discharge processes. As an inactive component in the
electrode, the binder not only holds other components (e.g, active materials,
conductive agents, and current collectors) together to maintain the mechanical
integrity of the electrode but also serves as a thickener to facilitate the homogeneous
distribution of particles. Therefore, binders play a key role in Si-based anodes by
maintaining the integrity of conductive networks in the electrode.

In this Account, on the basis of the extensive binder-related work on Si-based anodes since the 2000s, efforts made on maintaining
the conductive network can be categorized into two main strategies: (1) stabilization of the primary conductive network (which
generally refers to conductive agents) by enhancing the binding strength and resilience of the binding between electrode
components (i.e., Si particles, conducting agents, and current collectors) via various interactions (e.g., dipolar interactions and
covalent bonds) and (2) construction of the secondary conductive network by employing conductive binders, which serve as a
molecular-level conductive layer on active materials. In this sense, functional groups in binders can be divided into two categories:
mechanical structural units and conductive structural units. On the one hand, functional groups with strong polarities (e.g., —OH,
—COOH, —NH, and —CONH-) generally serve as binding structural units because of their bonding tendencies; on the other
hand, exhibiting hlgh electronic conductivity, conjugated functional groups (e.g,, —C,H,0,S—, —C,¢H,, —C,3Hg—, and —C,,H{N—)
are commonly found in conductive binders. Through establishing the correlation between structural units and their corresponding
properties, we systematically summarize the optimization strategies and design principles of binders to achieve a robust conductive
network in Si-based anodes. In addition, integration of desirable mechanical properties and high conductivity into the binder in
order to achieve a multidimensionally stable conductive network is proposed. Through an insightful retrospective and prospective on
binders, a key electrode component, we hope to provide a fresh perspective on performance optimization of Si-based anodes.
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Electrodes in Li-Ion Batteries. Adv. Energy Mater. 2021, microsized SiO, anodes that not only has a remarkable

11 (22), 2100601." Aligned electrodes with ultrahigh areal
mass loadings were prepared through copolymerization of
biopolymers followed by the ice-templating method. The
robust conductive network with efficient electron and
lithium-ion pathways and homogeneous porosity for
electrolyte percolation significantly reduced polarization
during charge transfer.
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Figure 1. Timeline of major milestones in Si-based anode binder research.
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Figure 2. (A) Schematic illustration of key factors for the conductive network in a Si-based electrode. (B) Representative mechanical and

conductive structural units of different binders in Si-based anodes.

intrinsic conductivity to serve as the secondary conductive
network but also exhibits excellent mechanical properties to
preserve the network.

Liu, D.; Zhao, Y.; Tan, R;; Tian, L. L.; Liu, Y.; Chen, H,;
Pan, F. Novel conductive binder for high-performance
silicon anodes in lithium ion batteries. Nano Energy
2017, 36, 206—212.° The synthesized polymeric binder
showed excellent adhesion force with Si nanoparticles due to
abundant carboxylate groups on the side chains, and the n-
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type polyfluorene backbones of the polymer promoted the
electronic conductivity under the reducing environment for
anodes.

Chen, H.; Wu, Z.; Su, Z.; Chen, S.; Yan, C.; Al-Mamun,
M,; Tang, Y,; Zhang, S. A Mechanically Robust Self-
Healing Binder for Silicon Anode in Lithium Ion
Batteries. Nano Energy 2021, 81, 105654.* A self-healing
poly(ether—thiourea) (PET) polymer binder was applied
for Si anodes. The cross-linked thiourea units in the binder
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Figure 3. (A) Molecular structure of sodium carboxymethyl cellulose (CMC-Na). (B) Condensation reaction between a free carboxylate group of
CMC-Na and the partially hydrolyzed SiO, layer on the surface of a Si particle. (C—E) Molecular structures of (C) C-chitosan, (D) alginate, and

(E) xanthan gum.

produced additional robustness to balance the softness of the
hydrogen-bond-containing self-healing polymer and provide
a strong binding force with the Si surface.

1. INTRODUCTION

In the efforts to develop next-generation lithium-ion batteries
(LIBs), high-capacity electrode materials are desirable. Among
the promising candidates, silicon-based anodes stand out
because of their theoretical specific capacity (1000—4200 mAh
g™"), low redox potential (~0.4 V vs Li/Li"), environmental
friendliness, and low cost. However, their large volume swing
(100—300%) during cycling leads to pulverization of the active
materials and separates them from the conductive network.
Such a process also induces the generation of an unstable and
thick solid—electrolyte interphase (SEI).” Therefore, building a
robust conductive network in Si-based anodes can be
considered a general strategy to realize their practical use.

As an inactive component in the electrode, a binder not only
holds the other components (e.g., active materials, conductive
agents, and current collectors) together to maintain the
mechanical integrity of the electrode but also serves as a
thickener to facilitate the homogeneous distribution of
particles.” Nevertheless, the importance of the binder is often
underestimated for intercalating-type electrode materials,
which barely suffer from volume changes.”® However, once
drastic volume changes are taken into consideration, upgrading
the binder will be necessary to maintain the integrity of
conductive networks.

On the basis of the extensive binder-related work on Si-
based anodes from the 2000s to nowadays (Figure 1), efforts
made to maintain the conductive network can be categorized
into two main strategies: (1) maintaining the primary
conductive network, where electrons are transferred through
limited physical contact between conductive agents (e.g.,
conductive carbon) and other electrode components, through
boosting of the mechanical stability of the electrode on a
macroscopic level and (2) construction of a secondary
conductive network, where electrons are transferred through
less conductive agents (e.g., the binder) but with larger contact
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areas by employing conductive binders, which serve as a
molecular-level conductive layer on the active materials. From
the perspective of electron transfer, the primary conductive
network allows faster electron flow but exhibits a limited
distribution. To prevent the active materials from being
disconnected from the primary conductive network, the
traditional strategy is either to upgrade the intermolecular
interactions of binders or to enhance the interfacial anchoring
between the binder and the active materials (Figure 2A). The
former approach aims to reinforce the mechanical strength of
the binder, whereas the latter improves the adhesive property
of the binder. More recently, binders with improved electronic
conductivity have been investigated to serve as the secondary
conductive network in the electrode.” As an extension of the
primary conductive network, the secondary conductive net-
work not only ensures that the active materials remain in the
conductive network in cases where they are physically
separated from conductive agents but also homogeneously
offloads the current flow on the surface of the active materials
so that voltage polarization can be reduced (Figure 2A).

For electrode materials, their electrochemical properties are
dictated by their crystalline structures, which consist of
periodically arranged basic structural units with vastly different
functions.'” By the application of this fundamental under-
standing to binder studies, different functional groups in
binders can also be divided into two categories: mechanical
structural units and conductive structural units. As demon-
strated in Figure 2B, on the one hand, functional groups with
strong polarities (e.g, —OH, —COOH, —NH,, and
—CONH-) generally serve as mechanical structural units
because of their bonding tendencies, whereas on the other
hand, conjugated functional groups that exhibit high electronic
conductivities (e.g, —C,H,0,S—, —C;H, —C;3Hg—, and
—C;,HgN—) are commonly found in conductive binders.
Herein, a retrospective study on the developmental trend of
binders for Si-based anodes is carried out. From the
perspective of different structural units and the corresponding
properties, we systematically summarize the optimization
strategies and design principles of binders to provide an in-
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depth understanding of the construction of a stable conductive
network in Si-based anodes.

2. ESTABLISHING MECHANICALLY ROBUST
ELECTRODES

As previously discussed, a binder’s ability to maintain the
primary conductive network can be evaluated from two
aspects: (1) the interaction between the binder and other
electrode components and (2) the interaction between
polymeric binders. The former interaction represents how
well the active materials adhere to the electrode, and the latter
determines the macroscopic mechanical properties of the
electrode. On the basis of different binding units, these
interactions can be divided into different categories in
ascending order of bonding strength: van der Waals force
(weak), dipolar interaction (medium), and covalent interaction
(strong). As a commercial binder for cathode materials,
polyvinylidene fluoride (PVDF) consists of a symmetrical C—F
skeleton,"" which precludes specific interactions other than the
van der Waals force. Such a weak binding force cannot endure
the large volume change of Si-based anodes during the
lithiation and delithiation processes. Although thermal treat-
ment and cross-linking methods have been adopted to improve
the cycling performance,'”"” the relatively poor mechanical
properties of PVDF still limit its application in Si-based
anodes. Therefore, instead of an isotropic force like the van der
Waals force, specific directional bonding is required to
construct a robust electrode. This section separately discusses
specific interfacial anchoring between binders and active
materials and inter/intramolecular bonding between binders.
It should be noted that many binders may possess more than
one type of interaction. Therefore, binders are categorized on
the basis of their main interaction forces.

2.1. Interfacial Anchoring between Binders and Active
Materials

Si particles are generally covered with a native and partially
hydrolyzed SiO, layer, and the resultant superficial free silicic
acid tends to undergo a chemical reaction (condensation) with
the —COOH groups of the binder. In the past decades,
polysaccharides have been proposed in binder formulation,
with CMC-Na as the most prominent example. As a polymeric
derivative of cellulose, sodium carboxymethyl cellulose (CMC-
Na) consists of carboxymethyl-substituted [-glucopyranose
with abundant —OH and —COO~ groups (Figure 3A)."* The
ester bonds between CMC-Na chains and silicon particles were
detected by Winter et al. (Figure 3B),"” and they can be
regulated through optimization of the pH'® and the degree of
substitution (DS), that is, the ratio of —OH groups substituted
by —OCH,COONa. Liu et al. found that the electrochemical
performance of a Si-based anode using CMC-Na with DS =
0.55 was superior to those using CMC-Na with lower or higher
DS values.'” It should be noted that CMC-Na with an
excessive DS tends to result in self-bonding and coiling of
CMC-Na inside particles, which may have a negative impact
on the binding performance between anode materials."®
Apart from CMC-Na, other polysaccharides with structures
similar to that of CMC-Na have also been investigated. Zhang
et al. used carboxymethyl chitosan (C-chitosan), a chitosan
derivative with improved solubility in water, as a new binder
for Si anodes (Figure 3C)."” It was implied that the —OH,
—NH,, and —COOH groups in C-chitosan were bound to the
hydroxylated Si surface, and C-chitosan exhibited superior

2091

electrochemical performance compared with CMC-Na. Alginic
acid is a copolymer of 1—4-linked f-pD-mannuronic acid (M)
and a-L-guluronic acid (G) residues. Sodium alginate (SA), a
high-modulus natural polysaccharide extracted from brown
algae that contains —COO™ groups in each of the polymer’s
monomeric units, was also used for Si-based anodes (Figure
3D).”” Better performance was realized by the use of SA as the
binder of Si anodes compared with CMC-Na because of the
formation of strong R—C(=0)—0-Si bonds between SA and
Si. Moreover, another polysaccharide, xanthan gum (XG),"*!
which also contains —COO— groups in each of the polymer’s
monomeric units, was used as the binder for Si-based anodes
by Wang and co-workers (Figure 3E).

Apart from polysaccharides, polyacrylic-based polymers
containing a higher ratio of carboxylate groups in the
molecules among the most promising candidates for binders
of Si-based electrodes. Poly(acrylic acid) (PAA) with a high
concentration of —COOH groups could potentially form
strong covalent bonds on the surface of Si-based materials,
leading to improved electrochemical performance. The first
report on the use of PAA as the binder for Si anodes was by
Yushin et al. in 2010.*> Apart from nano-Si anodes, PAA was
applied to SiO anodes by Komaba et al. and showed superior
performance compared with PVDF, CMC-Na, and poly(vinyl
alcohol) (PVA) binders.”” Besides, such binding ability can be
enhanced by modifying PAA with natural organics (glycina-
mide, catechol, and rosin) containing other functional groups
(Figure 4A).24’25 To achieve more efficient ester bonding,
Hong et al. chemically etched Si particles to produce abundant
—OH groups on the surface (Figure 4B). The abundant ester
bonds formed on the Si—PAA interfaces led to a sufficiently
high mechanical stability of the electrode for long-term
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Figure 4. (A) Chemical structures of PAA and PAA-based
copolymers. (B) Graphical representation of the chemical interactions
between Si nanoparticles treated with piranha solution and PAA
binder. Adapted from ref 26. Copyright 2019 American Chemical
Society.
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cycling.”® As a copolymer that possesses a main polymer chain
containing polyacrylonitrile (PAN) and PAA, LAI132 was
investigated by Xie et al. to fabricate SiO, anodes.”” Similarly,
the presence of the carboxyl groups was proved to play an
important role in alleviating the volume expansion of the Si-
based materials.

2.2. Improving Intermolecular Interactions of Binders

2.2.1. Hydrogen-Bond-Derived Dynamic Networks. A
hydrogen bond is the attraction between a hydrogen atom
bonded on one molecule or molecular fragment X—H (the
donor) and another atom or atomic group (the receptor),
which is denoted as “X—H--Y”, as shown in Table 1.

Table 1. Typical Hydrogen Bonds

X-H--Y X—H group Y group

F-H--F F-H —-F

O-H--N  —-COOH, -OH -NH,, —-NH-, R;N, —CN, —C=N-
O—-H:--0 —COOH, -OH -COOH(R), -OH, —-C=0, —-C-0-C—
N—-H-N —NH,, -NH- —NH,, —NH-, R;N, —CN, —C=N-
N—-H---O —NH,, -NH—- —COOH(R), —OH, —C=0, —-C-0-C-

As a stronger intermolecular or intramolecular interaction
compared with van der Waals forces, hydrogen bonding often
dominates the bonding properties of such polymers. Hydrogen
bonds can be dissociated and restored repeatedly, which
endows binders with self-healing properties. In general, typical
binders that are rich in hydrogen bonds are traditional
homopolymers such as PAA, PVA, and some polysaccharides
and glycoproteins such as crystalline p-cyclodextrin (f-
CD),”®*” agarose (AG),”’ guar gum (GG),”' konjac
glucomannan (KGM),” gum arabic (GA),” and so on,
because of the abundant X—H and Y groups on the main
chain.

Because of the presence of polar groups, it is well-
demonstrated that cellulose-based polymers undergo many
inter- and intrachain hydrogen-bonding interactions.’*”
Larcher et al. suggested that hydrogen bonding enables a
self-healing effect, which consequently preserves the electronic
conductive path within the Si-based electrodes.’® This result
manifests the importance of robust polymer chain networks
constructed within the electrode. To reconstruct the inter/
intrachain hydrogen-bonding interactions of CMC-Na, Pan et
al. applied nanosized Si particles to a SiO, electrode slurry,
which served as “nano-combs” to stretch CMC-Na chains from
aggregated states.”” As a result, an integrated and reinforced
electrode structure can be constructed by the uniform and
strong CMC-Na binding network.

PAA tends to possess a higher intensity of inter/intrachain
interactions because of the higher density of polar groups.
However, the higher crystallinity originating from the relatively
ordered chain segment structure makes the PAA matrix brittle.
To address this issue, Lin et al. constructed N-P-LiPN, a hard/
soft modulated network binder that includes partially lithiated
hard PAA as a framework and partially lithiated soft Nafion as
a buffer via the hydrogen-bonding effect (Figure 5A).>® N-P-
LiPN has strong adhesion and mechanical properties to
accommodate huge volume changes of Si anodes. To improve
the self-healing capability of PAA, it was copolymerized with
ureidopyrimidinone (UPy) moieties, which can undergo
strong quadruple hydrogen bonding to endow the polymer
networks with satisfactory mechanical properties.”” Further-
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more, Choi et al. introduced a polyrotaxane into PAA binder to
make it have extraordinary elasticity, which is derived from the
ring-sliding motion of the polyrotaxane.”” The outstanding
mechanical properties obtained by artificially increasing the
polymer chain winding make the electrode remain intact in the
repeated volume change process of silicon particles.

Bao et al. applied hydrogen-bond-directed self-healing
polymers (SHPs) to a silicon microparticle (SiMP) anode to
overcome the short cycle life (Figure SB). SHPs have both
mechanical and electrical healing capabilities, which allow
cracks and damage to heal repeatedly during battery
cycling.”*' Inspired by the composition of adhesive proteins
in mussels, Yang et al. reported a PAA-based copolymer
binder, poly(acrylic acid)—poly(2-hydroxyethyl acrylate-co-
dopamine methacrylate) (PAA—P(HEA-co-DMA)), which
can form a covalently cross-linked network with abundant
hydrogen bonds in the local area, providing special self-healing
capability (Figure 5C).*

2.2.2. lonic-Bond-Derived Dynamic Networks. Poly-
mers with charged groups can form an interconnected
structure with metal ions or polymers carrying opposite
charges through Coulombic attraction. The nondirectional and
unsaturated interaction between ions allows polymer segments
to form three-dimensional (3D) configurations in space.
Similar to hydrogen bonding, moderate ion interaction is
potentially associated with dynamic self-healing properties,
which can adapt to the constant volume changes of Si-based
anodes.

Sun et al. developed an alginate hydrogel binder for Si/C
anodes utilizing the cross-linking effect between SA molecules
via Ca®* ions.” It was shown that the SA chains could be
rearranged as a result of the ionic bonding between Ca®" ions
and —COO~ groups of SA. The improved electrochemical
performance is attributed to the enhanced mechanical
properties of the cross-linked SA network. Additionally, Lee
et al. studied the origin of the improved performance of Ca**
added SA as a binder for Si anodes.** Their results revealed
that the high unzipping energy, spontaneous rezipping, and
electrolyte desolation of the cross-links contribute to the
significant improvement in stiffness, toughness, and resilience
of the electrolyte-solvated alginate binder compared with SA
and other commercial binders. Moreover, other multivalent
cations, such as AI**, Ba**, Mn**, and Zn**, were also applied to
prepare alginate hydrogel binders for Si anodes (Figure 6A)."
Al-alg and Ba-alg outperformed the other binders by showing
good peeling test performance as well as the ability to maintain
the electrode integrity during the charge and discharge
processes. Furthermore, a polyacrylate binder that was ionically
cross-linked by Fe** ions was successfully applied to the SiMP
anodes (Figure 6B). The degradation of the SiMP electrode
was effectively alleviated by tuning the monovalent (Na*) and
multivalent (Fe>*) cations in the polyacrylate-based binder.*

Apart from the ionic interactions between the polymer and
metal ions, those between polymers carrying opposite charges
can also form 3D network structures. As shown in Figure 6C,
Mun et al. reported a binder with electrostatic cross-links
induced by a reversible interaction between acidic PAA and
basic poly(benzimidazole) (PBI).*” The physically cross-linked
binder (PAA—PBI) was shown to endow Si composite
electrodes with high mechanical strength, resulting in markedly
enhanced battery performance compared with those based on
PAA as the binder. Similarly, a self-healing porous scaffold
structure formed by the electrostatic interaction between
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carboxylates (—COO~) of Alg and protonated amines
(—=NH;") of C-chitosan was found to effectively tolerate the
tremendous volume changes of Si and preserve the electrode
structure during cycling processes.

2.2.3. Covalent-Bond-Derived Cross-Linking Net-
works. Because of the wide existence of carboxyl and hydroxy
groups in the linear polymeric binders, the esterification
reaction is the most commonly studied method to synthesize
covalently cross-linked binders. Choi et al. first demonstrated
that a cross-linked binder (c-PAA-CMC) comprising a cyclic
polymer (CMC-Na) and a linear polymer (PAA) could be
utilized to mitigate the large volume expansion of silicon
anodes upon lithiation.”” On the basis of the higher density of
hydroxyl groups in PVA chains, Wang et al. developed an
interpenetrated gel polymer binder for high-performance Si
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anodes by using a facile in situ thermal cross-linking technique
based on linear polymers (PVA and PAA).* Instead of direct
esterification reactions between polymers, micromolecules are
also used as the cross-linkers to form cross-linked binder
networks. Guo et al. developed a cross-linked carboxymethyl-
cellulose and citric acid polymer binder (c-CMC-CA) by
thermally induced condensation of —OH groups of CMC-Na
and —COOH groups of citric acid (Figure 7A). It is suggested
that c-CMC-CA possesses a high mechanical capability to
tolerate the stress induced by the volume changes in Si-based
anodes during electrochemical charge—discharge cycling.>'

In addition to esterification reactions, other reaction types
were also applied to the cross-linking of polymers with hydroxy
groups, such as aldol condensation, Schiff base formation,
copolymerization, etc. Yan et al. reported a cross-linked binder
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obtained by aldolization between —OH groups in dextrin and
—CHO groups in glutaraldehyde that delivered improved
electrochemical performance in Si anodes compared with
PVDF, CMC, and pristine dextrin.”> By cross-linking catechol-
functionalized chitosan with glutaraldehyde via the Schiff
mechanism,”’ Cao et al. developed a 3D cross-linked binder
(CS-CG+GA) that exhibited improved stability of the
conductive network (Figure 7B).>* Liu et al. used a room-
temperature fabrication process in which N,N-methylenebis-
(acrylamide) (MBAA) acted as the cross-linker for PAM to
synthesize a covalently cross-linked PAM (c-PAM) hydrogel.”*
The robust 3D c-PAM binder network not only significantly
enhances the strain resistance of the electrode but also shows a
strong affinity for bonding with the nano-Si surface.

Despite the strong binding effect exhibited by covalent
bonds, it should be noted that cross-linking could lower the
solubility of binders in solvents (e.g, H,0, NMP) and
eventually result in inhomogeneity of the electrodes. To
circumvent this issue, Liu et al. reported a polymer binder with
a highly stretchable and elastic network structure that was
realized by in situ cross-linking of PAA with isocyanate-
terminated polyurethane oligomers consisting of poly(ethylene
glycol) (PEG) chains and UPy moieties through the reaction
between isocyanate and carboxyl groups during the electrode
preparation process (Figure 7C).>> This binder not only
sufficiently accommodates the volume change of Si but also
provides strong mechanical support to effectively sustain the
integrity of the Si anodes.
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3. EXTENDING CONDUCTIVE NETWORKS AT THE
MICROSCOPIC LEVEL

3.1. Applications of Conductive Polymers in Si-Based
Anodes

Exhibiting inherent flexibility, the conductive binder could
serve as an additional electron migration path to tackle the
limiting features of the solely primary conductive network,
helping to construct a hierarchical conductive network (Figure
8A). Despite the difference in the conductivity levels of the
primary and secondary conductive paths, the polarization of
alloy-based anodes would decrease because of the molecular-
level contact with the conductive binder (Figure 8B).

The development of conductive binders is mainly based on
m-conjugated conducting polymers possessing delocalized 7-
electronic conductive units, which have been -extensively
studied in many fields such as light-emitting diodes, biosensors,
organic electrodes, etc.”°"** In general, conducting polymers
possess a typical electronic band gap (E,) of 1.5—3.0 eV, which
can be regulated by adjusting the highest occupied molecular
orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO) energy levels of the 7 system.”” Some representative
m-conjugated conductive units for conductive polymers are
listed in Figure 8C. The charge transport occurs via mobility of
charge carriers along the conjugated polymer chains and by
hopping of these charges from chain to chain.”’ However,
many conductive polymers are not natural for the application
of binders. First, the relatively rigid chain structures of these
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polymers result in low solubility in many solvents, which
inhibits their applicability in conventional paste-casting
electrode preparation protocols. Although they could be
electrochemically deposited onto the anodes or even mixed
with Si particles by mechanical ball milling,°"** those strategies
are not suitable for constructing an effective secondary
conducting network because of the lack of dispersion and
the poor physical contact with the active materials.

Apart from processability, their conducting mechanism and
chemical/electrochemical stability are also essential factors to
be considered when they serve as conductive agents in anodes.
For instance, although some widely used conductive polymers
(e.g., polyaniline (PANI)) are suitable for use as cathode
binders, it is difficult to maintain their doping states in
reducing environments. As a result, their conductivity is
compromised when they are used in anodes.”> Therefore,
conductive polymers that can be cathodically doped are
potentially more suitable for anodes. For example, poly-
(phenanthraquinone) (PPQ) can be cathodically doped
through electrochemical reduction in the voltage range of
0.1-0.15 V vs Li/Li" during the first lithiation process.
Because of the enhanced electronic conductivity, PPQ

significantly boosted the rate performance of Si anodes.’*
Nevertheless, the lack of mechanical structural units might
hinder their large-scale applications. Since the most critical
aspects of conductive binders are their capabilities to conduct
and bind, the key to constructing a stable secondary
conductive network can be regarded as following two main
strategies: (1) tuning the conductivity of conductive binders
through electrochemical or chemical doping and (2)
enhancing the robustness of the secondary conductive network
by introducing mechanical structural units.

3.2. Doping Chemistry of Conductive Binders for Better
Conductivity

The conductivity exhibited by the primary conducting agent
(ie., acetylene black) could be as high as 10°~10°> S cm™". In
comparison, most conjugated polymers are semiconductors
with electronic conductivities less than 107 S cm™ in their
neutral states, which could hardly serve as a secondary
conductive network. To boost the charge mobilities within
the Si-based electrodes, tuning the conductivity of conjugated
polymers is a key strategy for developing conductive binders.
Similar to inorganic semiconductors, the conductive polymer
chains could generate positive/negative charges via oxidation/
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reduction and stay electrically neutral by counterion doping. As
a result, conductivities as high as 10°-10° S cm™! could be
achieved for these polymers after cathodic (n-type)/anodic (p-
type) dopmg through chemical or electrochemical meth-
0ds.”®

Tailoring the HOMO/LUMO energy levels of the 7 system
is effective for enhancing the conductivity of conductive
binders for Si-based anodes. Polyfluorene (PF) derivatives are
well-known as highly fluorescent compounds and blue-light-
emitting materials. They contain a rigidly planar biphenyl
structure in the monomer unit with facile functionalization at
C9, providing access to regulation of the solubility and other
physical properties.”” To optimize the LUMO energy level of
PF-based polymers, Liu et al. employed synchrotron-based soft
X-ray absorption spectroscopy (XAS) to monitor their
unoccupied conduction states (Figure 9A).°> It was found
that compared with poly(9,9-dioctylfluorene) (PFO), poly-
(9,9-dioctylfluorene-co-9-fluorenone) (PFFO) exhibited a new
LUMO state at 287.7 eV (much lower than those of PFO and
PANI) due to the addition of carbonyl groups. This finding
was further confirmed by ab initio density functional theory
(DFT) simulation results. Thereafter, Pan and co-workers
proposed a similar strategy by synthesizing a phenanthraqui-
none (PQ)-doped PF-based copolymer (PFPQ-COONa)
(Figure 9B).”° The enhanced n-type doping enabled by the
PQ_units yielded an improvement of the rate capability of Si
nanoparticle electrodes without compromising the cycling
stability. Computational simulations of the HOMO and
LUMO distributions for both the initial state and the reduced
state of the segment strongly indicated increased chemical
activity located in the reduced PQ_group.

With regard to typical p-type conductive polymers, chemical
doping is a common approach to achieve high conductivity.
For example, protonated copper(II) phthalocyanine tetrasul-
fonate salts can act as dopants to provide electronic
conductivity of polypyrrole.”’ Protonic acid dopants can
protonate the nitrogen groups on PANI, leading to the
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delocalization of positive charge on polymer chains, which not
only improves the conductivity but also promotes the
processability of PANIL Cui et al. used phytic acid as both
the gelator and dopant for a PANI binder to improve the
mechanical strength and conductivity of the electron-
conducting framework via in situ polymerization (Figure
9C).”* Processable poly(3,4-ethylene dioxythiophene)
(PEDOT) binders were developed by the use of poly-
(styrenesulfonate) (PSS) as a dopant,”® and the mixture
(PEDOT:PSS) has been widely employed as the conductive
binder for both anodes and cathodes in LIBs (Figure 9D).”*
Zhang et al. prepared a Si/PEDOT:PSS composite electrode
by in situ polymerization, and that electrode showed improved
cycling performance compared with a Si electrode without the
polymer matrix, especially for the initial cycles.”> Additionally,
the electronic conductivity of PEDOT:PSS composites can be
further enhanced by introducing additional dopants such as
formic acid (FA)’® or sulfuric acid.°® For example,
PEDOT:PSS with 20 wt % FA was found to promote the Si
electrodes’ electronic conductivity up to 4.2 S cm™, which was
over 100 times that of the Si/PEDOT:PSS electrode before FA
treatment.””
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3.3. Improving the Mechanical Properties of Conductive
Binders

To overcome the inherently weak binder—binder and binder—
Si interactions for conductive binders, one effective strategy is
to introduce binding units into the chemical structure of the
conductive binder to improve the interaction anchoring the
binder to the other electrode components as well as
intermolecular interactions. In 2013, Liu et al. introduced
methyl benzoate ester units as the source of polar groups to
improve the adhesion of a PF-based binder, which adheres to
the SiO, surface of the Si particle and the CuO surface of the
Cu current collector more effectively (Figure 10A).”® At the
same time, incorporating a short ether moiety increased the
ductility of the polymers to accommodate the volume change
of Si electrodes. Thereafter, a high content of carboxylate
groups was introduced into PF-COONa by Pan and co-
workers,’ resulting in strong adhesion to Si particles and hence
the superior cycle stability of Si electrodes (Figure 10B).
Afterward, apart from the presence of covalent bonds
originating from carboxyl groups within the electrodes,
abundant hydroxyl and acylamino groups were further brought
into the polymer chains to generate multlple dynamic
hydrogen-bonding interactions (Figure 10C).”” For better
adhesion and swelling properties of pyrene-based conductive
polymers, a series of copolymers were prepared by introducing
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functional groups into the PPy chains, such as ethylene oxide
functional groups,™ carboxyl groups,”’ dopamine methacryla-
mide (DMA) groups,”* and butyl segments®® (Figure 10D).
Zheng et al. proposed that the inserted butyl segments act like
a “spring” to maintain the mechanical integrity of the
electrode.®> Moreover, Cui et al. used phytic acid as both
the gelator and dopant to improve the mechanical strength of
the electron transfer framework via in situ polymerization.**
The phosphoric acid groups in phytic acid molecules can bind
to the Si surface through hydrogen bonding, hence prolonging
the cycle lifetime. In a word, interweaved interactions can
greatly boost the mechanical strength (i.e., intersegmental
bonding) as well as the adhesion property (i.e., polymer—Si
bonding) of electrodes, resulting in improved cycle stability.
Alternatively, 3D cross-linked networks could better adapt to
the drastic volume changes. The cross-linked structure of
conductive binders shows resilient mechanical properties,
enabling the electrode to endure deformation after prolonged
cycling. Pan et al. designed a polyfluorene-type cross-linked
conductive binder (CCB) by connecting linear conductive
binder (LCB) chains to the conjugated anchor points (i.e.,
triphenylbenzene) through covalent bonds to serve as a
resilient secondary conductive network for SiO, anodes that
effectively maintains the integrity of the whole conductive
network by preventing deformation during cycling (Figure
11A).” To improve the mechanical properties of PANI, Xu et
al. developed a facile route to prepare a 3D conductive
interpenetrated gel network for Si anodes through chemical
cross-linking of acrylic acid monomer followed by in situ
polymerization of aniline (Figure 11B).** Besides, Senftle et al.
found that pyrolyzed polyacrylonitrile (PPAN) chains exhibit
dense and highly ordered stacking behavior at the anode
interface due to repeated pyridine structures, leading to
stronger adhesion and higher Li* conductivity.** In a
subsequent study, Huo et al. reported a stretchable conductive

glue (CG) binder formed by cross-linking of p-sorbitol and
vinyl acetate—acrylic (VAA) onto PEDOT:PSS chains. This
binder can be stretched up to 400% in volume without losing
conductivity (Figure 11C).*” Qian et al. proposed a multi-
valent ion (Sn**) cross-linked PEDOT:PSS to enhance the
strength by the formation of 3D structured polymers (Figure
11D).* Besides, their group also used glycerol as a cross-linker
for a PEDOT:PSS binder, which significantly boosted the
peeling force of Si electrodes and subsequently improved the
electrochemical performance.®

4. CONCLUSIONS AND OUTLOOK

As demonstrated by various examples in the previous literature,
the polymeric binder plays a key role in Si-based anodes by
maintaining the integrity of conductive networks in the
electrode. On the basis of their different roles in maintaining
the conductive network of Si-based anodes, current design and
improvement strategies for polymeric binders can be
categorized into maintaining mechanical stability and pursuing
higher electronic conductivity.

A robust macroscopic conductive network can be achieved
by tuning the mechanical structural units to promote
intermolecular interactions of binders or to enhance the
interfacial anchoring between the binder and the active
materials. Dipolar interactions essentially have reversible
bonding properties, and the efficiency of bond recovery
depends on the strength of dipolar interactions, which
facilitates self-healing properties in the electrodes. With the
highest bond energies, covalent bonds are critical for
improving the binder—particle interactions, especially for
active materials with large volume swings.

Alternatively, conductive binders with extended 7 con-
jugation throughout the polymer backbone serve as a
conducting bridge (secondary conductive network) between
Si particles via molecular-level contacts, keeping Si electro-
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chemically active during the repeated volume changes. Hence,
from this perspective, their optimization approach includes
promoting electronic conductivity through chemical/electro-
chemical doping as well as reinforcing their binding capability
by introducing mechanical structural units in the molecular
structures.

Finally, we offer some critical perspectives on binder
research that may provide solutions for improving not only
Si-based anodes but also, in broader terms, all electrode
materials:

(1) In the future design of binders, mechanical properties
and conductive properties should be considered
simultaneously to construct a robust hierarchical
conductive network. This goal might be achieved by
introducing mechanical structural units (e.g., as
branched chains) into a conductive polymer chain so
that both binding and conducting properties can be
integrated in one binder. Additionally, the interplay
between binding units and conductive units is also
worthy of in-depth study.

(2) Simulation techniques are also powerful tools for
material screening and theoretical analysis. For instance,
density functional theory (DFT) calculations could be
used to estimate both properties of the binder. The
prediction of electrochemical behavior and stress
conditions of Si-based anodes at the macroscopic level
can be achieved by finite-element simulations.

(3) Advanced characterization techniques should be devel-
oped for accurate evaluation of binders. For instance,
quantitative measurement systems should be established
to determine the effect of modification (e.g., doping and
grafting) on the conductivity and binding properties of
binders. Extra efforts also need to be dedicated to
understanding various dynamic physicochemical pro-
cesses of the electrode components via in situ character-
ization techniques (e.g., in situ Raman spectroscopy, in
situ infrared spectroscopy, and in situ NMR spectrosco-
py)-

(4) Apart from binding and conducting properties, other
properties such as solubility, processability, and dis-
persity should be taken into account during binder
design. Accordingly, relevant characterization techniques
(e.g., computed tomography, rheological measurement,
and zeta potential measurement) can be developed to
evaluate these properties.

With this Account, we hope to stimulate research in these
directions to further advance Si-based anodes for large-scale
commercial applications.
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