
www.afm-journal.de

© 2022 Wiley-VCH GmbH2201437  (1 of 7)

Research Article

Automating Materials Exploration with a Semantic 
Knowledge Graph for Li-Ion Battery Cathodes

Zhiwei Nie, Shisheng Zheng, Yuanji Liu, Zhefeng Chen, Shunning Li,* Kai Lei,*  
and Feng Pan*

The recent marriage of materials science and artificial intelligence has created 
the need to extract and collate materials information from the tremendous 
backlog of academic publications. However, this is notoriously hard to achieve 
in sophisticated application domains, such as Li-ion battery (LIB) cathodes, 
which require multiple variables for materials selection, making it challenging 
to automatically identify the critical terms in the text. Herein, a semantics 
representation framework, featuring a dual-attention module that refines 
word embeddings through multi-source information fusion, is proposed for 
literature mining of LIB cathodes. The word embeddings thus produced are 
biased toward domain-specific knowledge and can enable the detection of 
deep-seated associations among materials for targeted applications. Based on 
this framework, we establish a semantic knowledge graph dedicated to LIB 
cathodes, which allows us to unravel the latent materials relationships from 
scientific literature and even to discover candidate materials not yet exploited 
as cathodes before. This work provides a long-sought path to the realization of 
text-mining-based knowledge management for complicated materials systems 
with little dependence on domain expertise.
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is generally only known by experts in the 
corresponding subfield and therefore con-
stitutes the major obstacle in multi- and 
interdisciplinary research. Although there 
exist several standardized databases[3] 
containing the structural information 
and some basic properties of the known 
compounds, a comprehensive platform 
that integrates information on materials 
characteristics and applications is still 
lacking. This platform should encompass 
the scientific knowledge embedded in the 
text of scholarly literature and transform 
it into digital information flows, such that 
all the research results can be seamlessly 
interlinked with each other and better 
suited for data mining and knowledge dis-
covery in materials science. Currently, the 
increasing proliferation of scientific litera-
ture has sparked a growing need for such 
a platform.

Knowledge graph,[4] an effective knowl-
edge management tool, emerges as one of 

the most suitable techniques for fulfilling the above goal. In a 
knowledge graph, textual information is represented in a struc-
tured manner, which, when combined with association, fusion, 
and reasoning techniques, can realize the conversion from 
information to scientific knowledge. This can help researchers 
to obtain and sort out previous research findings accurately and 
efficiently, and even make qualitative predictions on materials.[5] 
The construction of a knowledge graph can be facilitated by 
natural language processing (NLP) technology.[6] NLP has been 
successfully applied in the fields of biology and medicine,[7] but 
its application in the field of materials is still in its infancy.[8] 
The main reasons lie in that the textual information in mate-
rials science literature usually differs with regard to application 
domains and adopts unstructured or highly heterogeneous for-
mats, which severely hinder the extraction and analysis of the 
critical terms. Recently, Tshitoyan et al. proposed to encode the 
textual information as unsupervised information-dense word 
embeddings and demonstrated that this NLP technique is able 
to identify potential thermoelectric materials.[9] Despite its 
appealing and powerful features, their approach in its original 
form could hardly be extended to other materials systems whose 
application relies on multiple properties. For example, mate-
rials for Li-ion battery (LIB) cathodes[10] must be electrochemi-
cally active but highly stable during ion (de)intercalation,[11] with 
voltage,[12] capacity,[13] and rate capability[14] as essential contrib-
uting factors for materials design. Such a sophisticated issue 

The ORCID identification number(s) for the author(s) of this article 
can be found under https://doi.org/10.1002/adfm.202201437.

1. Introduction

The discovery of novel materials is mostly born of our innate 
ability to perceive the correlation of different substances 
according to their compositions, structures, and properties. For 
example, we can expect KCl to exhibit physical and chemical 
properties close to NaCl since they have identical structure 
(rock salt) and similar compositions,[1] and we can also envisage 
the replacement of Si field-effect transistors by InP because the 
bandgap of InP is nearly equal to that of Si.[2] This human intui-
tion requires state-of-the-art knowledge in a specific area, which 
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necessitates delicate optimization of the word embeddings so as 
to permit text mining in a sufficiently rich corpus.

In this work, we develop a framework named dual-attention-
based word embeddings for materials (DATWEM) to generate 
representations rich in semantic information of given appli-
cation domains. We demonstrate its capability to deal with 
materials for LIB cathodes, a complicated material system that 
is hard to handle in traditional NLP tasks. In this framework, 
the word embeddings trained from the inorganic materials 
corpus are adjusted by two attention modules,[15] one lever-
aging the word embeddings trained from the cathode materials 
corpus and the other utilizing the keywords of articles. In so 
doing, relationships between various kinds of compounds are 
unearthed in the sense that they possess similar textual infor-
mation with a bias toward LIB cathode application. A knowl-
edge graph dedicated to this subfield is established based on 
these relationships, showing transferability and strong robust-
ness in the face of a large corpus. This protocol could enable 

the discovery of novel materials for complicated applications 
from the wealth of scientific literature, which can accelerate the 
design process and inspire innovative ideas for future studies 
of multifunctional materials.

2. Results and Discussion

The architecture of DATWEM is shown in Figure 1. The frame-
work contains two independent word embedding modules that 
encode the corpus of inorganic materials and the corpus of 
cathode materials, respectively. The word embeddings obtained 
from the inorganic material corpus are then processed by a bi-
directional long short-term memory (BiLSTM)[16] layer, after 
which the initial representations of the words are fed into an 
attention module. At this stage, the domain knowledge obtained 
from the cathode materials corpus is incorporated into these 
word embeddings. Afterward, they are subjected to another 

Figure 1.  The architecture of DATWEM. It consists of two word embedding modules, a keywords module, two BiLSTM layers and two attention 
modules. x and y represent two different sets of word vectors, z represents keywords transformed vectors, h and s represent hidden states, α and β 
represent the corresponding weight.
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BiLSTM layer, and the second attention operation with respect 
to keywords is executed. In this manner, the information of 
inorganic materials, LIB cathodes, and the main descriptors of 
the articles are integrated by multi-source information fusion 
(see more details in Experimental Section and Supporting 
Information), through which the domain-specific information 
of the text can be effectively captured and transformed into 
semantics representations.

The word embeddings for materials intimately related with 
a targeted application have offered a practical means to quan-
tify their relationships under the same context, which is a pre-
requisite for the construction of a knowledge graph. As shown 
in Figure 2, the flowchart for building a knowledge graph of 
cathode materials includes four steps. First, the material words 
are vectorized using one-hot encoding.[17] Next, the high-
dimensional vectors are compressed into low-dimensional ones 
in the word embedding process. After the separate training 
of word embeddings in different corpus, they are delivered as 
the input attributes to DATWEM, producing the final word 
embeddings. Under the distributional hypothesis,[18] the cosine 
similarity between the word embeddings can be used as a 
measure of the correlation between the semantics of two sub-
jects.[19] Accordingly, we construct the knowledge graph of LIB 
cathode materials, in which the nodes represent the data points 

corresponding to the relevant materials, and the edges repre-
sent the correlation between them using the metric of cosine 
similarity. It is worth mentioning that most of the conventional 
databases only consider the direct associations between data, 
while the knowledge graph can mine deeper data connections 
and provide a portfolio of expandable networks in the subdivi-
sion fields, thus offering a quick understanding of the correla-
tion between materials from a data-driven perspective.

The dual-attention mechanism in DATWEM can offer high 
interpretability to the word embeddings due to the incorpo-
rated domain knowledge. In Figure 3a, the capability of the 
DATWEM framework in capturing the correlation between LIB 
cathode materials is evaluated by comparing its quality with 
the traditional word embedding scheme (without attention 
module) employed in the previous works.[9] Six indicators are 
taken into consideration, including accuracy, precision, recall, 
F1-score (F1), area under PR curve (AUPR), and area under 
ROC curve (AUROC), which can quantify different capabilities 
of the models. In order to comprehensively verify the ability to 
identify the correlation of materials, these indicators should be 
examined simultaneously. The outcomes reveal that the dual-
attention module can significantly improve each of the six indi-
cators, thus enabling a much more reliable representation of 
the contextual characteristics of cathode materials.

Figure 2.  Construction flowchart of a knowledge graph. a) Corpus preprocessing. b) Word embedding training. c) Quantification of similarity between 
word embeddings. d) Establishment of the knowledge graph.
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To permit a more explicit comparison, we analyze the associa-
tion network of cathode materials outputted by both frameworks. 
Figure 3b,c displays the degree of similarity between the word 
embeddings for two groups of cathode materials: the represent-
ative ones (LiCoO2, LiMn2O4, Li2MnO3, and LiFePO4) and other 
materials that show relatively high similarity with the keyword 

“cathode.” The word embeddings of these typical cathode mate-
rials contain rich distributed information related to cathode 
application, which guarantees efficient and high-quality associ-
ations and therefore greater probability of discovering potential  
cathode materials. Under the traditional scheme (Figure 3b), a 
high similarity between Li2MnO3 and Li4Mn5O12 (highlighted 
by a purple square) is derived, because they have some identical 
features, such as element (Mn, O) and valence state (+4 for Mn) 
that are closely related with their application in cathodes. This 
conforms to our expectations. However, relationships against 
our expectation are also prevalent, such as LiCoO2-Li4Mn5O12, 
which shows much higher similarity than the Li2MnO3-
Li4Mn5O12 pair. More importantly, the similar structure (spinel) 
between LiMn2O4 and Li4Ti5O12 is overemphasized in the word 
embeddings, leading to the false classification of Li4Ti5O12 as 
a cathode, while it is generally used as an anode. These con-
tradictions with domain knowledge most likely stem from the  
ineffective word embeddings that fail to reproduce the key infor-
mation relevant to cathode applications. By contrast, cathode 
materials relationships obtained from DATWEM (Figure 3c) are 
more consistent with existing knowledge typically recognized  
by researchers in this field. For example, LiCoO2-LiNiO2 and 
LiFePO4-LiMnPO4 pairs are extracted due to structural simi-
larity, while other pairs bear resemblance in terms of either 
composition or electrochemical performance (e.g., Li2MnO3-
LiMnO2, LiFePO4-Li2FePO4F). As compared to the traditional 
scheme, the calculated degree of similarity from the DATWEM 
framework is overall considerably higher, indicative of an asso-
ciation network more unambiguously described. The accuracy 
and robustness of the established knowledge graph allow us to 
efficiently query and retrieve information of materials for tar-
geted application from the literature.

On the basis of this knowledge graph, we can navigate 
the materials that have made their appearance in the litera-
ture but have not yet been recognized as potential cathode 
materials. We perform unsupervised clustering (Figure 4a) 
to visualize the semantic similarity between different mate-
rials that are identified as related to one of the representative 
cathode materials in the corresponding clustered group. The 
parameter settings can be found in the Supporting Informa-
tion. Notably, nearly all the materials in the vicinity of LiCoO2 
are either layered transition-metal oxides (similar structure 
to LiCoO2) or comprised of Co ions (similar composition to 
LiCoO2)—both features are correlated with their use as LIB 
cathodes. By filtering those that are already included in the 
cathode materials corpus, we discover a material with the 
formula Li2TiMn3O8, which is a potential cathode material 
according to the knowledge graph but has not been explored 
as a cathode in the literature. Li2TiMn3O8 and LiCoO2 form a 
direct connection (Figure 4b) through their common features, 
such as the layered structure, and form an indirect connection 
through the latent identities, such as elements with variable 
valence that are appropriate for cathode application. With the 
aid of this knowledge graph, the connections between cathode 
materials are unveiled in a logical way, thus enabling the pre-
diction of new material compositions under the guidance of 
existing known cathode materials.

We would like to note that the DATWEM framework is ver-
satile and can be adopted to a variety of application domains, 

Figure 3.  Comparison between different word embedding models.  
a) Comparison of performance in cathode materials derivation framework 
between traditional word embedding model without attention and the 
modified model with dual-attention module (DATWEM). A manual test 
set of 50 samples including cathode materials and non-cathode materials 
is used for model evaluation. Heatmaps of the cathode materials relation-
ships obtained from b) the traditional word embedding model and c) the 
DATWEM model. The colors scale with the values of the cosine similarity 
between word embeddings.
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enabling the exploration of interpretable relationships between 
materials and avoiding the establishment of knowledge graphs 
within a black box. This is essential when a substantial amount 
of materials and properties are related to the investigated 
domain. For example, most of the reported anodes, electrolytes, 
and coating materials would bear a strong relationship to the 
cathodes in the scientific literature, making it a necessity to con-
strain their participation in the constructed knowledge graph 
for cathodes only. The attention mechanism can automate the 
extraction of expert knowledge from the text and therefore give 
rise to significant improvements in terms of materials classi-
fication and prediction. This automation also means that the 
knowledge graph construction process is largely independent 
of expertise in the corresponding application domain, thus 
helping to break down the disciplinary boundaries and offer 
opportunities for multifunctional materials design. A potential 
limitation of the present work is that the abstracts of the articles 
provide very limited information on the detailed electrochem-
ical data, such as the voltage profile and structural evolution 

during operation. Future incorporation of image data and full-
text corpus is therefore warranted to confer predictive power on 
the electrochemical performance.

3. Conclusion

In this study, we construct a semantic knowledge graph of LIB 
cathode materials based on a novel materials science knowledge 
embedding framework, DATWEM, which is especially apt to 
handle complicated materials systems. This framework utilizes 
the attention mechanism to refine word embeddings such that 
semantics representations rich in prior knowledge of the targeted 
field are generated. High fidelity is verified in the establishment 
of relationships between materials for cathode application, 
which ensures the superior quality of the constructed knowledge 
graph. We demonstrate the feasibility of automatic prediction 
of LIB cathode materials by leveraging this knowledge graph. 
The model proposed is transferable in a variety of subdivisions 

Figure 4.  The application of knowledge graph for materials discovery. a) Cluster atlas of cathode materials via unsupervised learning after dimension-
ality reduction of the word vectors. The total input embeddings are 620 000 and large clusters of four typical cathode materials are retained to visualize 
the semantic similarity between different materials. b) Automatic identification of similar features between Li2TiMn3O8 and LiCoO2. Through the mining 
of direct or indirect paths between the nodes corresponding to different materials, potential cathode materials with high similarity to typical cathodes 
can be automatically identified from the corpus of scientific literature.
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in materials science as it can guide algorithms to learn specific 
information by which the interpretability is greatly enhanced. 
We believe that this work will pave the way for the cross integra-
tion of materials science and artificial intelligence so as to realize 
materials innovation from a data-driven perspective.

4. Experimental Section
Data Collection and Processing: 4.1 million abstracts related to 

materials, physics, and chemistry were collected through application 
programming interfaces (APIs)[20] of Web of Science (https://clarivate.
com/webofsciencegroup/solutions/xml-and-apis/), Elsevier’s Scopus 
and Science Direct (https://dev.elsevier.com/), and the Springer Nature 
(https://dev.springernature.com/). The obtained corpus was segmented 
by ChemDataExtractor[21] to generate tokens. Pymatgen,[22] regular 
expression, and rule-based techniques were used in combination to 
normalize chemical formulas. More specifically, the chemical formulas 
were screened to abandon uncertain variables, with the elements 
arranged in alphabetical order and the common multipliers normalized 
to the smallest integers.

Abstract Classification: 2000 abstracts were randomly chosen as 
training data to train two linear classifiers based on logistic regression[23] 
to obtain corpora of inorganic materials and cathode materials 
separately. Randomly selected abstracts were annotated as “relevant” or 
“not relevant” and each abstract was described using a term frequency-
inverse document frequency (TF-IDF)[24] vector. F1-score[25] was selected 
as the evaluation index of the two classifiers. After training, the F1-score 
of the inorganic materials classifier reached 92%, and that of the cathode 
materials classifier reached 94%. Through the classification of the 
literature, we could remove articles outside the targeted research field.

Word Embedding: The Word2Vec[26] toolkit in genism (https://
radimrehurek.com/gensim/) was used to implement word embedding. In 
order to achieve a better embedding effect, a series of comparative tests 
were carried out to explore the appropriate model and the combination 
of parameters. After comparison, the Skip-gram model was selected and 
the hyperparameters were optimized as follows: the initial learning rate 
was 0.01, the initial learning rate dropped to 0.0001 within 100 epochs, the 
embedding was 250-dimensional, the context window was 9, the threshold 
of subsampling was 10−4, and the number of negative samples was 17.

Attention Module I: Word embeddings trained from inorganic materials 
corpus will form initial representations of the words after being processed 
by the BiLSTM layer. Word embeddings trained from cathode materials 
corpus and the initial representation were operated based on the attention 
mechanism, so as to obtain new representations rich in the characteristic 
information of cathode materials. The procedure is as follows.
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where W1 is the parameter of the first BiLSTM layer, hi represents its 
hidden layer state, vi is the word vector of inorganic materials corpus, 
flookup is the table lookup function, Wemb is the word embedding matrix 
of cathode materials corpus, ui is the word embedding representation 
of the cathode material corpus, l is the length of input sequence of the 
cathode materials corpus, α ui

 is the corresponding weight, and Mi is the 
new representation of the words.

Attention Module II: We first extracted keywords from cathode 
materials corpus based on the TF-IDF algorithm. The top k words with 
the largest TF-IDF value were selected as keywords. The TF-IDF of word 
ti in document dj was then calculated as follows.
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where ni,j is the number of times the word appears in the document 

dj, ∑ ,n
k

k j  is the sum of the number of occurrences of all words in the 

document dj, |D| is the total number of documents in the corpus, and  
|{j: ti ∈ dj}| is the number of documents containing the word ti.

After the extraction of keywords, a keyword set was formed, and then 
the expression of keywords was obtained through a word embedding 
matrix embW w  and a fully connected neural network. This representation 
and the output of the first layer of BiLSTM underwent keywords attention 
operations to obtain a representation Nj,t of each word based on the 
keywords attention distribution. The procedure is as follows.
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( )= ,lookup embe f e Wi i
w 	 (9)

= +tanh( )u W e be k i ki
	 (10)

∑
β

( )
( )=

exp

exp

s u

s u
u

i
T

e

l i
T

e
i

i

l

	 (11)

∑β=N ui
i

u ei i
	 (12)

where W2 is the parameter of the second BiLSTM layer, si represents its 
hidden layer state, Wk and bk are the parameters of the fully connected 
layer, uei

 is the representation of the keyword ei, l is the length of input 
sequence of keywords, and Ni is the new expression based on keywords 
attention distribution.

Statistical Analysis: The corpus was processed by text search and 
regular expression matching[27] to reduce the statistical noise (extraneous 
abstracts with titles containing “Foreword,” “Comment,” etc.) of the 
corpus. For data presentation, evaluation indicators were rounded to 
one decimal place and the similarities between word embeddings were 
rounded to four decimal places. For statistical analysis, a sample size 
of 620 000 word embeddings was collected, forming the pre-processed 
vocabulary. Accuracy, Precision, Recall, F1-score, AUROC, and AUPR 
were adopted as statistical indices to evaluate the performance. In 
this work, programming languages of Python and R were employed. 
The model and related code have been released in an open-source 
format and are available in the Github repository: https://github.com/
AI-for-Materials/DATWEM.
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Supporting Information is available from the Wiley Online Library or 
from the author.
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