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Automating Materials Exploration with a Semantic
Knowledge Graph for Li-lon Battery Cathodes

Zhiwei Nie, Shisheng Zheng, Yuanji Liu, Zhefeng Chen, Shunning Li,* Kai Lei,*

and Feng Pan*

The recent marriage of materials science and artificial intelligence has created
the need to extract and collate materials information from the tremendous
backlog of academic publications. However, this is notoriously hard to achieve
in sophisticated application domains, such as Li-ion battery (LIB) cathodes,
which require multiple variables for materials selection, making it challenging
to automatically identify the critical terms in the text. Herein, a semantics
representation framework, featuring a dual-attention module that refines

word embeddings through multi-source information fusion, is proposed for
literature mining of LIB cathodes. The word embeddings thus produced are
biased toward domain-specific knowledge and can enable the detection of
deep-seated associations among materials for targeted applications. Based on
this framework, we establish a semantic knowledge graph dedicated to LIB
cathodes, which allows us to unravel the latent materials relationships from
scientific literature and even to discover candidate materials not yet exploited
as cathodes before. This work provides a long-sought path to the realization of
text-mining-based knowledge management for complicated materials systems

with little dependence on domain expertise.

1. Introduction

The discovery of novel materials is mostly born of our innate
ability to perceive the correlation of different substances
according to their compositions, structures, and properties. For
example, we can expect KCI to exhibit physical and chemical
properties close to NaCl since they have identical structure
(rock salt) and similar compositions,[! and we can also envisage
the replacement of Si field-effect transistors by InP because the
bandgap of InP is nearly equal to that of Si.l!l This human intui-
tion requires state-of-the-art knowledge in a specific area, which
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is generally only known by experts in the
corresponding subfield and therefore con-
stitutes the major obstacle in multi- and
interdisciplinary research. Although there
exist several standardized databases!’]
containing the structural information
and some basic properties of the known
compounds, a comprehensive platform
that integrates information on materials
characteristics and applications is still
lacking. This platform should encompass
the scientific knowledge embedded in the
text of scholarly literature and transform
it into digital information flows, such that
all the research results can be seamlessly
interlinked with each other and better
suited for data mining and knowledge dis-
covery in materials science. Currently, the
increasing proliferation of scientific litera-
ture has sparked a growing need for such
a platform.

Knowledge graph, an effective knowl-
edge management tool, emerges as one of
the most suitable techniques for fulfilling the above goal. In a
knowledge graph, textual information is represented in a struc-
tured manner, which, when combined with association, fusion,
and reasoning techniques, can realize the conversion from
information to scientific knowledge. This can help researchers
to obtain and sort out previous research findings accurately and
efficiently, and even make qualitative predictions on materials.®!
The construction of a knowledge graph can be facilitated by
natural language processing (NLP) technology.®! NLP has been
successfully applied in the fields of biology and medicine,”! but
its application in the field of materials is still in its infancy.®!
The main reasons lie in that the textual information in mate-
rials science literature usually differs with regard to application
domains and adopts unstructured or highly heterogeneous for-
mats, which severely hinder the extraction and analysis of the
critical terms. Recently, Tshitoyan et al. proposed to encode the
textual information as unsupervised information-dense word
embeddings and demonstrated that this NLP technique is able
to identify potential thermoelectric materials.’! Despite its
appealing and powerful features, their approach in its original
form could hardly be extended to other materials systems whose
application relies on multiple properties. For example, mate-
rials for Li-ion battery (LIB) cathodes!™™ must be electrochemi-
cally active but highly stable during ion (de)intercalation,™ with
voltage,””! capacity,®! and rate capabilityl™ as essential contrib-
uting factors for materials design. Such a sophisticated issue
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necessitates delicate optimization of the word embeddings so as
to permit text mining in a sufficiently rich corpus.

In this work, we develop a framework named dual-attention-
based word embeddings for materials (DATWEM) to generate
representations rich in semantic information of given appli-
cation domains. We demonstrate its capability to deal with
materials for LIB cathodes, a complicated material system that
is hard to handle in traditional NLP tasks. In this framework,
the word embeddings trained from the inorganic materials
corpus are adjusted by two attention modules,” one lever-
aging the word embeddings trained from the cathode materials
corpus and the other utilizing the keywords of articles. In so
doing, relationships between various kinds of compounds are
unearthed in the sense that they possess similar textual infor-
mation with a bias toward LIB cathode application. A knowl-
edge graph dedicated to this subfield is established based on
these relationships, showing transferability and strong robust-
ness in the face of a large corpus. This protocol could enable

the discovery of novel materials for complicated applications
from the wealth of scientific literature, which can accelerate the
design process and inspire innovative ideas for future studies
of multifunctional materials.

2. Results and Discussion

The architecture of DATWEM is shown in Figure 1. The frame-
work contains two independent word embedding modules that
encode the corpus of inorganic materials and the corpus of
cathode materials, respectively. The word embeddings obtained
from the inorganic material corpus are then processed by a bi-
directional long short-term memory (BiLSTM)! layer, after
which the initial representations of the words are fed into an
attention module. At this stage, the domain knowledge obtained
from the cathode materials corpus is incorporated into these
word embeddings. Afterward, they are subjected to another

-
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Cathode materials

word embedding module
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Inorganic materials word embedding module

Figure 1. The architecture of DATWEM. It consists of two word embedding modules, a keywords module, two BiLSTM layers and two attention
modules. x and y represent two different sets of word vectors, z represents keywords transformed vectors, h and s represent hidden states, o and 8

represent the corresponding weight.

Adv. Funct. Mater. 2022, 32, 2201437

2201437 (2 of 7)

© 2022 Wiley-VCH GmbH

85UB017 SUOWIWIOD BA1IE81D) 8|ceatidde 8y Aq peusenof a2 sojoiiie YO ‘SN JO S8|ni o} Akeiq18UlUO A8]IA UO (SUOTIPUOD-PUR-SLLIBI WD A8 | AReiq 1 puljuo//:Sdny) SUONIPUOD pue Sws | 81 8eS *[5Z02/TT/E2] U0 A%iqiTauliuo A8|IM ‘Usyzusys JO umo L AIsIBAIuN Ag ZE5T0220Z WIPe/Z00T OT/I0p/w0d" A3 1M AIq1juluo peouenpe;/scily Wolj pepeojumoq ‘9z ‘220z ‘82089T9T



ADVANCED
SCIENCE NEWS

www.advancedsciencenews.com

a/‘m—. I ‘\ b

...... [ Liceo, | — |

Vectorization

c/ N
_ xay)
vl a / (Xa,Y2) DATWEM
o
h—b
X >
_ab X1X2 +Y1)2
cosf = .

\_ Tl X b1~ /xZ + 92 x /<2 + 72 1)

d 7/~ Knowledge graph \

.

Input vector
(620,000)

Hidden layer
(Linear neurons)

Output layer
(Softmax
classifier) l

1
1
1
1
—————————— 1
1
|
]
1
1

[o]o]o

cycle conductivity voltage density

High-dimensional
word vector

Low-dimensional
word vector

Reduce dimension

wq

_9° ° )

Figure 2. Construction flowchart of a knowledge graph. a) Corpus preprocessing. b) Word embedding training. ¢) Quantification of similarity between

word embeddings. d) Establishment of the knowledge graph.

BiLSTM layer, and the second attention operation with respect
to keywords is executed. In this manner, the information of
inorganic materials, LIB cathodes, and the main descriptors of
the articles are integrated by multi-source information fusion
(see more details in Experimental Section and Supporting
Information), through which the domain-specific information
of the text can be effectively captured and transformed into
semantics representations.

The word embeddings for materials intimately related with
a targeted application have offered a practical means to quan-
tify their relationships under the same context, which is a pre-
requisite for the construction of a knowledge graph. As shown
in Figure 2, the flowchart for building a knowledge graph of
cathode materials includes four steps. First, the material words
are vectorized using one-hot encoding.”) Next, the high-
dimensional vectors are compressed into low-dimensional ones
in the word embedding process. After the separate training
of word embeddings in different corpus, they are delivered as
the input attributes to DATWEM, producing the final word
embeddings. Under the distributional hypothesis,¥l the cosine
similarity between the word embeddings can be used as a
measure of the correlation between the semantics of two sub-
jects.¥) Accordingly, we construct the knowledge graph of LIB
cathode materials, in which the nodes represent the data points
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corresponding to the relevant materials, and the edges repre-
sent the correlation between them using the metric of cosine
similarity. It is worth mentioning that most of the conventional
databases only consider the direct associations between data,
while the knowledge graph can mine deeper data connections
and provide a portfolio of expandable networks in the subdivi-
sion fields, thus offering a quick understanding of the correla-
tion between materials from a data-driven perspective.

The dual-attention mechanism in DATWEM can offer high
interpretability to the word embeddings due to the incorpo-
rated domain knowledge. In Figure 3a, the capability of the
DATWEM framework in capturing the correlation between LIB
cathode materials is evaluated by comparing its quality with
the traditional word embedding scheme (without attention
module) employed in the previous works.! Six indicators are
taken into consideration, including accuracy, precision, recall,
Fl-score (F1), area under PR curve (AUPR), and area under
ROC curve (AUROC), which can quantify different capabilities
of the models. In order to comprehensively verify the ability to
identify the correlation of materials, these indicators should be
examined simultaneously. The outcomes reveal that the dual-
attention module can significantly improve each of the six indi-
cators, thus enabling a much more reliable representation of
the contextual characteristics of cathode materials.
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Figure 3. Comparison between different word embedding models.
a) Comparison of performance in cathode materials derivation framework
between traditional word embedding model without attention and the
modified model with dual-attention module (DATWEM). A manual test
set of 50 samples including cathode materials and non-cathode materials
is used for model evaluation. Heatmaps of the cathode materials relation-
ships obtained from b) the traditional word embedding model and c) the
DATWEM model. The colors scale with the values of the cosine similarity
between word embeddings.

To permit a more explicit comparison, we analyze the associa-
tion network of cathode materials outputted by both frameworks.
Figure 3b,c displays the degree of similarity between the word
embeddings for two groups of cathode materials: the represent-
ative ones (LiCoO,, LiMn,0,, Li;MnO;, and LiFePO,) and other
materials that show relatively high similarity with the keyword
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“cathode.” The word embeddings of these typical cathode mate-
rials contain rich distributed information related to cathode
application, which guarantees efficient and high-quality associ-
ations and therefore greater probability of discovering potential
cathode materials. Under the traditional scheme (Figure 3b), a
high similarity between Li,MnO; and Li;MnsO;, (highlighted
by a purple square) is derived, because they have some identical
features, such as element (Mn, O) and valence state (+4 for Mn)
that are closely related with their application in cathodes. This
conforms to our expectations. However, relationships against
our expectation are also prevalent, such as LiCoO,-Li;Mn;Oy,,
which shows much higher similarity than the Li,MnO;-
Li;Mn;Oy, pair. More importantly, the similar structure (spinel)
between LiMn,0, and Li,TisO;, is overemphasized in the word
embeddings, leading to the false classification of LiTisOy, as
a cathode, while it is generally used as an anode. These con-
tradictions with domain knowledge most likely stem from the
ineffective word embeddings that fail to reproduce the key infor-
mation relevant to cathode applications. By contrast, cathode
materials relationships obtained from DATWEM (Figure 3c) are
more consistent with existing knowledge typically recognized
by researchers in this field. For example, LiCoO,-LiNiO, and
LiFePO,LiMnPO, pairs are extracted due to structural simi-
larity, while other pairs bear resemblance in terms of either
composition or electrochemical performance (e.g., Li;MnOs-
LiMnO,, LiFePO,-Li,FePO,F). As compared to the traditional
scheme, the calculated degree of similarity from the DATWEM
framework is overall considerably higher, indicative of an asso-
ciation network more unambiguously described. The accuracy
and robustness of the established knowledge graph allow us to
efficiently query and retrieve information of materials for tar-
geted application from the literature.

On the basis of this knowledge graph, we can navigate
the materials that have made their appearance in the litera-
ture but have not yet been recognized as potential cathode
materials. We perform unsupervised clustering (Figure 4a)
to visualize the semantic similarity between different mate-
rials that are identified as related to one of the representative
cathode materials in the corresponding clustered group. The
parameter settings can be found in the Supporting Informa-
tion. Notably, nearly all the materials in the vicinity of LiCoO,
are either layered transition-metal oxides (similar structure
to LiCoO,) or comprised of Co ions (similar composition to
LiCoO,)—both features are correlated with their use as LIB
cathodes. By filtering those that are already included in the
cathode materials corpus, we discover a material with the
formula Li,TiMn;Og, which is a potential cathode material
according to the knowledge graph but has not been explored
as a cathode in the literature. Li,TiMn;0g and LiCoO, form a
direct connection (Figure 4b) through their common features,
such as the layered structure, and form an indirect connection
through the latent identities, such as elements with variable
valence that are appropriate for cathode application. With the
aid of this knowledge graph, the connections between cathode
materials are unveiled in a logical way, thus enabling the pre-
diction of new material compositions under the guidance of
existing known cathode materials.

We would like to note that the DATWEM framework is ver-
satile and can be adopted to a variety of application domains,
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Figure 4. The application of knowledge graph for materials discovery. a) Cluster atlas of cathode materials via unsupervised learning after dimension-
ality reduction of the word vectors. The total input embeddings are 620000 and large clusters of four typical cathode materials are retained to visualize
the semantic similarity between different materials. b) Automatic identification of similar features between Li,TiMn3;Og and LiCoO,. Through the mining
of direct or indirect paths between the nodes corresponding to different materials, potential cathode materials with high similarity to typical cathodes

can be automatically identified from the corpus of scientific literature.

enabling the exploration of interpretable relationships between
materials and avoiding the establishment of knowledge graphs
within a black box. This is essential when a substantial amount
of materials and properties are related to the investigated
domain. For example, most of the reported anodes, electrolytes,
and coating materials would bear a strong relationship to the
cathodes in the scientific literature, making it a necessity to con-
strain their participation in the constructed knowledge graph
for cathodes only. The attention mechanism can automate the
extraction of expert knowledge from the text and therefore give
rise to significant improvements in terms of materials classi-
fication and prediction. This automation also means that the
knowledge graph construction process is largely independent
of expertise in the corresponding application domain, thus
helping to break down the disciplinary boundaries and offer
opportunities for multifunctional materials design. A potential
limitation of the present work is that the abstracts of the articles
provide very limited information on the detailed electrochem-
ical data, such as the voltage profile and structural evolution
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during operation. Future incorporation of image data and full-
text corpus is therefore warranted to confer predictive power on
the electrochemical performance.

3. Conclusion

In this study, we construct a semantic knowledge graph of LIB
cathode materials based on a novel materials science knowledge
embedding framework, DATWEM, which is especially apt to
handle complicated materials systems. This framework utilizes
the attention mechanism to refine word embeddings such that
semantics representations rich in prior knowledge of the targeted
field are generated. High fidelity is verified in the establishment
of relationships between materials for cathode application,
which ensures the superior quality of the constructed knowledge
graph. We demonstrate the feasibility of automatic prediction
of LIB cathode materials by leveraging this knowledge graph.
The model proposed is transferable in a variety of subdivisions
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in materials science as it can guide algorithms to learn specific
information by which the interpretability is greatly enhanced.
We believe that this work will pave the way for the cross integra-
tion of materials science and artificial intelligence so as to realize
materials innovation from a data-driven perspective.

4. Experimental Section

Data Collection and Processing: 4.1 million abstracts related to
materials, physics, and chemistry were collected through application
programming interfaces (APIs)/?l of Web of Science (https://clarivate.
com/webofsciencegroup/solutions/xml-and-apis/), Elsevier's Scopus
and Science Direct (https://dev.elsevier.com/), and the Springer Nature
(https://dev.springernature.com/). The obtained corpus was segmented
by ChemDataExtractor?! to generate tokens. Pymatgen,?d regular
expression, and rule-based techniques were used in combination to
normalize chemical formulas. More specifically, the chemical formulas
were screened to abandon uncertain variables, with the elements
arranged in alphabetical order and the common multipliers normalized
to the smallest integers.

Abstract Classification: 2000 abstracts were randomly chosen as
training data to train two linear classifiers based on logistic regression(?’l
to obtain corpora of inorganic materials and cathode materials
separately. Randomly selected abstracts were annotated as “relevant” or
“not relevant” and each abstract was described using a term frequency-
inverse document frequency (TF-IDF)24 vector. Fl-scorel?’! was selected
as the evaluation index of the two classifiers. After training, the Fl-score
of the inorganic materials classifier reached 92%, and that of the cathode
materials classifier reached 94%. Through the classification of the
literature, we could remove articles outside the targeted research field.

Word Embedding: The Word2Vec? toolkit in genism (https://
radimrehurek.com/gensim/) was used to implement word embedding. In
order to achieve a better embedding effect, a series of comparative tests
were carried out to explore the appropriate model and the combination
of parameters. After comparison, the Skip-gram model was selected and
the hyperparameters were optimized as follows: the initial learning rate
was 0.01, the initial learning rate dropped to 0.0001 within 100 epochs, the
embedding was 250-dimensional, the context window was 9, the threshold
of subsampling was 107, and the number of negative samples was 17.

Attention Module I: Word embeddings trained from inorganic materials
corpus will form initial representations of the words after being processed
by the BiLSTM layer. Word embeddings trained from cathode materials
corpus and the initial representation were operated based on the attention
mechanism, so as to obtain new representations rich in the characteristic
information of cathode materials. The procedure is as follows.

h; =BiLSTM(v;;W}) )
ui :flookup(“ivwemb) (2)
_ep(hlw) 3

Yy exp(hlu) C)
M; = 205“‘“/ (4)

where W, is the parameter of the first BiLSTM layer, h; represents its
hidden layer state, v; is the word vector of inorganic materials corpus,
Sfiookup is the table lookup function, Wep,, is the word embedding matrix
of cathode materials corpus, u; is the word embedding representation
of the cathode material corpus, | is the length of input sequence of the
cathode materials corpus, a,, is the corresponding weight, and M; is the
new representation of the words.

Attention Module 1I: We first extracted keywords from cathode
materials corpus based on the TF-IDF algorithm. The top k words with
the largest TF-IDF value were selected as keywords. The TF-IDF of word
t;in document d; was then calculated as follows.
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n;

tf; =2
fl’J Zk”k,j

2/
1+Hj:t,vedj}‘

sfdf, ;= tf, xidf; )

idf; =log

where n;; is the number of times the word appears in the document

d; an'j is the sum of the number of occurrences of all words in the
k

document d;, |D] is the total number of documents in the corpus, and
|{j: ti € d}| is the number of documents containing the word t..

After the extraction of keywords, a keyword set was formed, and then
the expression of keywords was obtained through a word embedding
matrix WY and a fully connected neural network. This representation
and the output of the first layer of BiLSTM underwent keywords attention
operations to obtain a representation N;, of each word based on the

keywords attention distribution. The procedure is as follows.

s; =BILSTM(M;;W,) 8)

e = ﬁookup(eirw:;nb) (9)

u,, = tanh(Wje; +by) (10)
exp(s,-Tue’)

S el "
N; =B, u., (12)

where W, is the parameter of the second BiLSTM layer, s; represents its
hidden layer state, W, and by are the parameters of the fully connected
layer, u,, is the representation of the keyword ¢; [ is the length of input
sequence of keywords, and N; is the new expression based on keywords
attention distribution.

Statistical Analysis: The corpus was processed by text search and
regular expression matching!?l to reduce the statistical noise (extraneous
abstracts with titles containing “Foreword,” “Comment,” etc.) of the
corpus. For data presentation, evaluation indicators were rounded to
one decimal place and the similarities between word embeddings were
rounded to four decimal places. For statistical analysis, a sample size
of 620000 word embeddings was collected, forming the pre-processed
vocabulary. Accuracy, Precision, Recall, Fl-score, AUROC, and AUPR
were adopted as statistical indices to evaluate the performance. In
this work, programming languages of Python and R were employed.
The model and related code have been released in an open-source
format and are available in the Github repository: https://github.com/
Al-for-Materials/ DATWEM.

Supporting Information

Supporting Information is available from the Wiley Online Library or
from the author.
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