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Insights Into the Interfacial Degradation 
of High‑Voltage All‑Solid‑State Lithium Batteries
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HIGHLIGHTS

•	 The cycle performance of poly(ethylene oxide) (PEO)-based all-solid-state lithium batteries with LiCoO2 cathode was greatly improved 
via coating LiCoO2 with high-voltage stable Li3AlF6.

•	 At the upper cutoff voltage of 4.2 V, the poor electrochemical performance is mainly originated from the structure collapse of LiCoO2 
at the surface instead of the decomposition of PEO.

•	 When the voltage reaches 4.5 V or even higher potentials, the intensive electrochemical decomposition of PEO-based solid polymer 
electrolyte accelerated interfacial degradation.

ABSTRACT  Poly(ethylene oxide) (PEO)-based solid poly-
mer electrolyte (SPE) is considered as a promising solid-state 
electrolyte for all-solid-state lithium batteries (ASSLBs). Nev-
ertheless, the poor interfacial stability with high-voltage cath-
ode materials (e.g., LiCoO2) restricts its application in high 
energy density solid-state batteries. Herein, high-voltage stable 
Li3AlF6 protective layer is coated on the surface of LiCoO2 
particle to improve the performance and investigate the fail-
ure mechanism of PEO-based ASSLBs. The phase transition 
unveils that chemical redox reaction occurs between the highly 
reactive LiCoO2 surface and PEO-based SPE, resulting in 
structure collapse of LiCoO2, hence the poor cycle performance 
of PEO-based ASSLBs with LiCoO2 at charging voltage of 
4.2 V vs Li/Li+. By sharp contrast, no obvious structure change 
can be found at the surface of Li3AlF6-coated LiCoO2, and the original layered phase was well retained. When the charging voltage reaches up 
to 4.5 V vs Li/Li+, the intensive electrochemical decomposition of PEO-based SPE occurs, leading to the constant increase of cell impedance 
and directly causing the poor performance. This work not only provides important supplement to the failure mechanism of PEO-based batter-
ies with LiCoO2, but also presents a universal strategy to retain structure stability of cathode–electrolyte interface in high-voltage ASSLBs.
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1  Introduction

All-solid-state lithium batteries (ASSLBs) with solid-state 
electrolyte (SSE) are deemed to be the most promising alter-
native to conventional lithium-ion batteries owing to their 
improved safety and high energy density [1–9]. Among the 
SSE, poly(ethylene oxide) (PEO)-based solid polymer elec-
trolyte (SPE) possesses high ionic conductivity, low cost and 
low interfacial resistance toward electrodes [10–14].

However, it has been widely reported that PEO-based SPE 
has a relatively narrower electrochemical window than other 
types of SSE. At charging voltage of above 3.9 V (vs. Li/
Li+), PEO-based SPE is likely to undergo electrochemical 
decomposition [15–19]. When combined with high-voltage 
cathodes, such as LiCoO2, lithium nickel manganese cobalt 
oxide (NCM) and lithium nickel cobalt aluminum oxide 
(NCA), the PEO-based ASSLBs present poor electrochemi-
cal performance [20–24].

Recently, numerous efforts have been devoted to improv-
ing cycling performance of ASSLBs with PEO-based SPE 
and high-voltage cathodes [24–26]. Zhou et al. [27] intro-
duced high-voltage stable poly(N-methyl-malonic amide) 
middle layer to protect PEO-based SPE from high-voltage 
oxidation, which stabilized the PEO-based ASSLBs operat-
ing in the voltage range of 3.0–4.25 V. Besides, Liang et al. 
[28] adopted lithium niobium oxide (LNO) thin film on the 
surface of NMC811 particles to stabilize the interface of 
NCM811 and electrolyte and thus suppress the oxidation of 
the PEO-based SPE.

Nevertheless, the failure mechanism of PEO-based SPE 
with high-voltage cathodes remains unclear. Yang et al. [29] 
tended to attribute the poor cycling performance to the struc-
ture instability of PEO-based SPE at high voltage. Mean-
while, it is supposed that the reactive terminal –OH group 
may be the root cause of the narrow electrochemical window 
of PEO-based SPE. By replacing terminal –OH group with 
more stable –OCH3, the electrochemical window could be 
extended to 4.3 V, which boosted the cycling stability of 
solid-state Li–NCM532 batteries. In another study, Chen’s 
group [30] concluded that electrochemical decomposition 
of PEO-based SPE is not the only cause for the poor perfor-
mance of LiCoO2/PEO-LiTFSI/Li batteries. When paired 
with LiMn0.7Fe0.3PO4 cathode, the PEO-based solid-state 

battery shows much higher capacity retention than that 
with LiCoO2 under the same cutoff voltage (4.2 V vs Li/
Li+). To better understand such inconsistency, a systematic 
study regarding to the interfacial decomposition of PEO is 
required.

Herein, Li3AlF6 (LAF) solid-state electrolyte is chosen 
as coating material on the surface of LiCoO2 particles to 
systematically analyze the failure mechanism of PEO-based 
solid-state batteries with LiCoO2 electrode. LAF was pre-
dicted to have good electrochemical stability and high ionic 
conductivity through theoretical calculation [31–33]. The 
results reveal that, at charging voltage of 4.2 V, the serious 
capacity decay mainly derives from structure collapse of 
LiCoO2, resulting in phase transition of the LiCoO2. When 
the charging cutoff voltage reaches up to 4.5 V or even 
higher, PEO-based SPE decomposed severely, leading to 
the constant increase of cell impedance and the degradation 
of battery. With the protection of LAF coating layer, struc-
ture failure of LiCoO2 is inhibited and the decomposition of 
PEO-based SPE is reduced, exhibiting improved capacity 
retention.

2 � Experiment Section

2.1 � Preparation of PEO‑Based SPE

PEO (Mw = 600,000, ACROS ORGANICS), lithium 
bis(trifluoromethanesulfonyl)imide (LiTFSI, Aladdin, 99%) 
and Al2O3 were dispersed in anhydrous acetonitrile (Inno-
chem, 99.9%) and stirred continuously for 10 h at 80 °C. 
The mole ratio is EO:Li = 25:1. The obtained homogeneous 
gel-like solution was then casted onto a Teflon substrate, 
and the solvent was slowly evaporated at room temperature 
first, and SPE was then further dried for 24 h at 80 °C in an 
Ar-filled glovebox to obtain PEO-based SPE.

2.2 � Preparation of LAF‑coated LiCoO2

Firstly, LiCoO2 and NaF were dispersed and stirred for 4 h 
in deionized water. LiCl was added into the mixture solution 
and stirred for 6 h to obtain in situ LiF-coated LiCoO2. The 
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obtained LiF-coated LiCoO2 and AlF3 were dispersed and 
stirred in deionized water for 8 h and then dried at 80 °C. 
Finally, the composite was sintered at 400 °C for 10 h to 
obtain LAF-coated LiCoO2.

2.3 � Electrochemical Measurements

LAF-coated LiCoO2 or bare LiCoO2 cathode electrodes were 
prepared by mixing LAF-coated LiCoO2 or pristine LiCoO2 
powder, PEO, LiTFSI and SP in anhydrous acetonitrile to form 
a homogeneous slurry. The mass ratio of LiCoO2: PEO: SP was 
7: 2: 1 by weight, and the amount of LiTFSI was based on the 
content of PEO (EO: Li = 10: 1). Then, the slurry was casted on 
a carbon-coated aluminum foil with doctor blade, followed by 
drying overnight at 110 °C in Ar-filled glove box. 2032 coin-type 
cells were assembled in Ar-filled glove box and constructed using 
bare LiCoO2 and LAF-coated LiCoO2 electrode, lithium metal 
anode and PEO-based SPE. The assembled cells were kept at 
60 °C for 30 h before test. The cycling test was performed in the 
voltage range of 3.0–4.2 V (vs. Li/Li+) at current density of 0.2C 
(1C = 150 mAh g−1) at 60 °C. Electrochemical impedance spec-
troscopy (EIS) measurements were taken with an electrochemical 
workstation (1400 cell test system, Solartron) in the frequency 
range from 1 MHz to 0.1 Hz with 10 mV amplitude at 60 °C.

2.4 � Materials Characterization

The X-ray diffraction (XRD) patterns of bare LiCoO2 and 
LAF-coated LiCoO2 were collected by Bruker D8 Discover 
diffractometer with Cu Kα radiation within the 2θ range of 
10–80°. The morphology and elements distribution of sam-
ples were characterized by scanning electron microscope 
(SEM, ZEISS SUPRA55) with an energy-dispersive spec-
troscopy (EDS, OXFORD, X-MaxN TSR). High-resolution 
transmission electron microscopy (HRTEM) images were 
collected using JEOL3200FS field-emission transmission 
electron microscopy (FETEM). All these cross-section sam-
ples were prepared by focused ion beam (FIB, FEI, Scios).

3 � Results and Discussion

The thermodynamic electrochemically stable window of 
LAF was calculated by density functional theory (DFT) 
method. The equilibrium voltage profile and corresponding 
phase equilibria are shown in Fig. 1a. The LAF exhibits 

a wide electrochemical window with a cathodic limit of 
1.03 V (vs Li+/Li) and an anodic limit of 6.51 V (vs Li+/
Li). Meanwhile, LAF was proved to possess acceptable ionic 
conductivity in previous study [32]. In view of that PEO-
based SPE is likely to undergo electrochemical decomposi-
tion charging voltage of above 3.9 V (vs. Li/Li+) and the 
decomposition may cause battery performance degrada-
tion [15–19]. The introduction of a modification layer with 
a wider electrochemical window is a common method to 
improve battery performance [34, 35]. Therefore, the high-
voltage stable LAF thin film with acceptable ionic conduc-
tivity is suitable to modify the interface between LiCoO2 
cathode and PEO-based SPE to demonstrate the failure 
mechanism of LCO/PEO solid-state battery.

The as-prepared LAF-coated LiCoO2 (LAF@LCO) sam-
ples show the same XRD pattern as the bare LiCoO2 (LCO) 
(Fig. 1b, JCPDS No. 75–0532), indicating the well-pre-
served structure of LiCoO2 after surface modification. The 
SEM images show that the relatively smooth surface of LCO 
becomes rough after coated with a layer of Li3AlF6 (Fig. 1c, 
d). In Fig. 1e, EDS mapping of LAF@LCO particle shows 
clear signals of Al and F element. But the bare LCO with 
smooth surface only exhibits signals of Co and O element 
(Fig. S1). HRTEM is employed to further characterize the 
structure of LAF layer, which was uniformly coated over the 
whole surface of LCO. As shown in Fig. 1f, the clear lattice 
fringes of bulk area in HRTEM exhibit interplanar distance 
of 0.4728 nm belonging to the (003) planes of the layered 
phase in LAF@LCO particle [36–38], which is the same as 
bare LCO (Fig. S2). A lattice stripe in surface area shows 
different interplanar distance of 0.2135 nm, close to the 
interplanar distance of the (332) plane of Li3AlF6 (JCPDS 
No. 88-0860) [39–41].

To evaluate the effectiveness of the modification strat-
egy, the galvanostatic charge/discharge performance of LCO 
and LAF@LCO with PEO was tested using 2032 coin-type 
cells in the voltage range of 3.0–4.2 V (vs Li+/Li) at 0.2C 
at 60 °C. The cycling performance of LCO and LAF@LCO 
at 0.2C (Fig. 2a) shows that despite the slightly lower ini-
tial capacity, LAF@LCO delivered much-improved cycling 
stability as well as higher Coulombic efficiency compared 
with pristine LCO, which completely failed after 50 cycles. 
Figure 2b, c shows the charge/discharge curves of LCO and 
LAF@LCO at different cycles, respectively. The cycle per-
formance of LAF@LCO is much better than that of LCO. 
The LAF@LCO cell shows an initial specific capacity of 
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122 mAh g−1 at 0.2C and increases to 125 mAh g−1, fol-
lowed by slightly decrease to 98 mAh g−1 over 100 cycles 
with capacity retention of 75.1%. The initial increase of 
capacity could result from gradual wetting of LiCoO2 elec-
trodes and PEO-based SPE [42, 43]. In contrast, the LCO 
cell decays rapidly from 127 to 10 mAh g−1 after 50 cycles. 
The LAF@LCO also exhibits superior cycle performance 
to LCO at 0.5C, with 80.2% of discharge capacity retention 
(Fig. 2d). The charge/discharge curves of LCO and LAF@
LCO at 0.5C are presented in Fig. S3. The above results sug-
gest that the surface modification promotes the interfacial 
stability between LCO and PEO-based SPE.

To investigate the role of LAF coating layer in promoting 
electrochemical performance, EIS, TEM and X-ray pho-
toelectron spectroscopy (XPS) were conducted. Figure 3a 
shows the C 1s spectra from pristine PEO-based SPE. Three 
peaks can be observed at 292.1, 285.7 and 284.4 eV, which 

can be assigned to –CF3, C–O, C–C, respectively [44–47]. 
The –CF3 signal in C 1s spectra comes from LiTFSI [48, 
49]. The C–O signal in C 1s and O 1s (532.5 eV) spectra 
(Fig. S4a) can be attributed to the ether chain (–C–O–C–) 
in PEO-based SPE. The initial areal ratio of C–O to C–C 
peak is 1: 0.21. Figure 3b, c shows the C 1s spectra from 
PEO-based SPE surface after cycling with LCO and LAF@
LCO at 3.0–4.2 V, respectively. By comparison, the areal 
ratio of C–O to C–C peak in C 1s XPS spectra decreases 
to 1: 0.55 after cycling with LCO electrode, which indi-
cates the loss of ether chain. O–C=O (288.5 eV) peak can 
be originated from the decomposition products of PEO-
based SPE, because of the redox reaction with LCO dur-
ing charge/discharge process. As PEO consists of repeating 
–(O–CH2–CH2)– units, the emerging peak corresponding to 
O–C=O group (288.5 eV) group is attributed to the oxidative 
decomposition of PEO [50]. Previous studies have shown 

Fig. 1   a Thermodynamic equilibrium voltage profile and phase equilibria of Li3AlF6. b XRD patterns of LCO and LAF@LCO. SEM image of 
c LCO particles and d LAF@LCO particles. e EDS elemental maps of Al and F on a LAF@LCO particle. f HRTEM images of LAF@LCO. (I 
and II) FFT patterns of marked region I and II in f, respectively
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that the hydroxyl group (–OH) at the end of PEO molecular 
chain will lose electrons and form monatomic free radicals 
(–O), while protons are trapped by lithium salts (as shown 
in Eq. 1) [54]. In view of the low proportion of hydroxyl 
groups in the molecular chain, we have made the following 
assumptions regarding to the decomposition process of PEO 
at 4.2 V voltage: C-O bond in PEO molecular chain breaks, 
forming long-chain polymers with –O· and –CH2

· groups, 

respectively (Eq. 2). The unstable –CH2
· group further con-

verts to polymer with –CH·–CH3 (Eq. 3). –O· groups will 
then react with –CH·–CH3 groups, forming O–C–O group 
(Eq. 4), which tends to be oxidized into O–C=O group under 
oxidative potential (Eq. 5), and protons are also believed to 
be trapped by lithium salts. Delithiated LixCoO2 containing 
highly oxidative Co4+ will accelerate this reaction process 
by attracting electrons and protons.

Fig. 2   a The discharge capacity and Coulombic efficiency at 0.2C for 100 cycles. Charge/discharge profiles of b LCO/PEO-LiTFSI/Li cell, c 
LAF@LCO/PEO-LiTFSI/Li cell. d The discharge capacity and Coulombic efficiency at 0.5C for 100 cycles. All cells were tested at 60 °C and 
pre-cycled for five cycles at 0.2C
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(1)

(2)

(3)

(4)

(5)

Herein, we use the areal ratio of O–C=O to C–O peaks in 
C 1s spectra as the indicator of the oxidation degree of PEO. 
With an upper cutoff voltage of 4.2 V, the ratios obtained 

Fig. 3   C 1s from a pristine PEO-based SPE, PEO-based SPE surface after cycling with b LCO electrode and c LAF@LCO electrode. d EIS 
spectra of LCO/PEO-LiTFSI/Li cell and LAF@LCO/PEO-LiTFSI/Li cell after cycling. HRTEM images of e LCO and f LAF@LCO particles 
after cycling. Cycled samples were obtained from the ASSLBs after 50 cycles in the voltage range of 3.0–4.2 V at 0.2C
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from LCO and LCO@LAF after cycling are 0.08 and 0.05, 
respectively. indicating that the decomposition of PEO is 
effectively inhibited by LAF layer.

EIS was carried out to evaluate the cell impedance 
(Fig. 3d). However, the bulk resistance (Rb) of PEO-based 
SPE and total impedance of cells with LCO and LAF@LCO 
electrode are unchanged and almost equal after 50 cycles 
(Fig. S5), which demonstrates that the decomposition prod-
ucts still possess favorable ionic conductivity during long-
term cycles. It could be concluded that the decomposition of 
PEO-based SPE may not be the primary cause for capacity 
fading.

The surficial structure change of cycled LiCoO2 is also 
analyzed by HRTEM. As seen in Fig. 3e, different lattice 
stripes appear at the surface of LiCoO2 particle. The inter-
planar distance of 0.2472 and 0.2137 nm belongs to the 

(111) and (200) plane of CoO [51, 52], respectively, which 
indicates the structure of LiCoO2 is transformed into CoO 
phases during cycling. The structure transition of LiCoO2 is 
consistent with previous report, and CoO has been found to 
suppress the Li+ transport [30]. The phase transition unveils 
that chemical redox reaction occurs at the interface between 
the highly reactive LiCoO2 surface and PEO-based SPE, 
resulting in structure collapse of LiCoO2, hence the poor 
cycle performance of LCO at voltage of 4.2 V.

By sharp contrast, no obvious structure change can be 
found at the surface of LAF@LCO, and the original layered 
phase was well retained (Fig. 3f). It can be concluded that 
under this testing condition, LAF serves as a protective layer 
to shield LiCoO2 from chemical degradation and promotes 
the cycling stability.

Fig. 4   Voltage profile and corresponding in  situ DEMS results of mass signals m/z 2(H2), 16 (CH4), 26 (C2H2), 28 (CO, C2H4), 30 (C2H6, 
HCHO), 32 (O2) and 44 (CO2, CH3CHO) of aLCO/PEO-LiTFSI/Li cell and b LAF@LCO/PEO-LiTFSI/Li cell cycled in the voltage ranges 
of 3.0–4.2, 3.0–4.3, 3.0–4.4, 3.0–4.5, 3.0–4.6, 3.0–4.7, 3.0–4.8 V for one cycle at 60 °C. A final charging to 4.8 V leads to the cell failure. The 
charge/discharge profiles of c LCO/PEO-LiTFSI/Li cell and d LAF@LCO/PEO-LiTFSI/Li cell. The cells are charged at a constant current den-
sity of 0.5C to 4.5 V and followed by discharging to 3.0 V at 0.2C at 60 °C
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Compared with PEO in contact with LCO@LAF, the 
direct contact between PEO and LCO accelerates the oxida-
tion of PEO. It is believed that delithiated LixCoO2 contain-
ing highly oxidative Co4+ tends to react with PEO, leading 
to oxygen loss in LCO lattice and degradation of PEO chains 
that forms decomposition products. Such chemical redox 
reaction will be inhibited by the electronic insulating LAF 
coating.

Differential electrochemical mass spectrometry (DEMS) 
was adopted to study the gas release behavior in PEO-based 

ASSLBs. LiCoO2/PEO-LiTFSI/Li was cycled under differ-
ent upper cutoff voltages of 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 and 
4.8 V at 0.2C (Fig. 4a). Only trace amount of gas can be 
detected before 4.4 V, indicating negligible PEO decompo-
sition. This result agrees with the conclusion drawn above 
that PEO decomposition might not be the reason for capac-
ity fading of battery in the voltage range of 3.0–4.2 V. A 
small amount of C2H4O comes from the fracture of adja-
cent C-O bond in PEO as shown in Eq. 2. As the cutoff 
voltage gradually increases to 4.5 V, significant amounts of 
O2 are released by the cell. Before the voltage could reach 

Fig. 5   EIS spectra of a LCO/PEO-LiTFSI/Li cell and b LAF@LCO/PEO-LiTFSI/Li cell after cycling in voltage range of 3.0–4.5 V. C 1s from 
PEO-based SPE surface after cycling with cLCO electrode and d LAF@LCO electrode. O 1s from PEO-based SPE surface after cycling with e 
LCO electrode and f LAF@LCO electrode. Cycled samples were obtained from the ASSLBs after 30 cycles in voltage range of 3.0–4.5 V
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4.6 V, a long PEO decomposition plateau emerges, accom-
panied with severe release of various gases including H2, 
CH4, C2H2, C2H4, CO, C2H6, HCHO, O2, CO2 (C2H4O). 
In contrast, gas release started to occur at 4.6 V for LAF@
LCO cells and intensive decomposition of PEO cannot be 
observed before 4.8 V (Fig. 4b). The improved performance 
may be ascribed to more stable surface of LAF@LCO par-
ticles, where PEO and LiCoO2 are physically separated by 
the LAF layer, inhibiting the chemical decomposition of 
PEO at the PEO-LCO interface. Moreover, in the voltage 
range of 3.0–4.5 V, the capacity fading of LCO cell became 
even faster (Fig. 4c), while the LAF@LCO cell remained 

relatively stable (Fig. 4d) despite a mild attenuation. The 
contrast of cycle performance can be observed clearly in 
Fig. S6. In general, the improvement of LCO/PEO perfor-
mance by LAF coating in our work is satisfactory (as shown 
in Table S1). The DEMS data indicate that compared with 
4.2 V, the decomposition reaction of PEO becomes more 
drastic above 4.5 V, where a large amount of gas (e.g., C2H2, 
H2, C2H4, and O2) are released.

The electrochemical decomposition of PEO-based SPE 
would lead to the increase of cell impedance. EIS is con-
ducted to evaluate the cell impedance (Fig.  5a, b). The 
impedance of cell with LCO electrode increased rapidly 

Scheme 1   Proposed mechanism of LAF coating layer for enabling stable and high-voltage ASSLBs
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with the increase of the cycle number and reached over 900 
Ω after 20 cycles. The increase of the cell impedance reveals 
that continue decomposition of PEO-based SPE occurs at 
the interface. In contrast, the impedance of the cell with 
LAF@LCO electrode was retained at around 200 Ω after 
20 cycles, indicating more stable interface between PEO 
and LAF@LCO electrode due to the presence of LAF coat-
ing layer.

XPS is carried out to characterize the electrochemical 
decomposition of PEO-based SPE. Figure 5c shows the C 
1s spectra from PEO-based SPE surface after cycling with 
LCO. Compared with XPS data obtained from battery cycled 
in the voltage range of 3.0–4.2 V, a new peak corresponding 
to R–C=O (287.2 eV) emerged markedly after cycling with 
LCO electrode in the voltage range of 3.0–4.5 V, accom-
panied with the apparent decrease of C-O peak, which can 
be attributed to further oxidation of PEO segments at 4.5 V 
with the areal ratio of R–C = O to O–C of 0.24. This process 
is also accompanied with the apparent decrease of C-O peak, 
which can be attributed to the oxidation of PEO segments at 
4.5 V. It is speculated that (shown in Eq. 6), monatomic free 
radicals (–O·) obtained previously will be further oxidized 
into carbonyl group [54]. In the process, delithiated LixCoO2 
containing highly oxidative Co4+ will also accelerate this 
reaction process by attracting electrons and protons. As for 
PEO cycled with LAF@LCO, the areal ratio of O–C = O 
to O–C peaks significantly decreased from 0.24 to 0.06 
(Fig. 5d), suggesting a well-protected electrode–electrolyte 
interface at a voltage as high as 4.5 V. The same conclu-
sion can be drawn from the O 1 s results for both samples 
(Fig. 5e, f). The XPS results are in good accordance with the 
constant increase of impedance and the results of DEMS. 
Different from the capacity fading at 4.2 V, the even poorer 
performance at 4.5 V could be attributed to both the degra-
dation of LCO and the decomposition of PEO.

(6)

For LAF@LCO, the mild decomposition of PEO-based 
SPE could be ascribed to the deteriorated conductive carbon/
SPE interface at elevated voltages. The linear sweep voltam-
metry results of carbon, LCO and LAF@LCO electrodes 
confirm the deterioration of carbon/SPE interface at high 
voltage. As shown in Fig. S7, the current increases abruptly 
at the voltage beyond 4.2 V for LCO electrode, indicating 
the intense decomposition of PEO-based SPE, whereas simi-
lar current increase is observed after 4.5 V for the LAF@
LCO and carbon electrodes, which further demonstrates the 
protective effect of LAF coating layer. Since the bare carbon 
particles may cause the decomposition of PEO-based SPE 
at high voltages (≥ 4.5 V), future optimization should focus 
on interfacial protection at the electrode level.

4 � Conclusions

In conclusion, the LAF is applied to coat on LiCoO2 
particles for investigating the deterioration mechanism 
of PEO-based ASSLBs paired with high-voltage cathode. 
As shown in Scheme 1, at charging voltage of 4.2 V, the 
poor electrochemical performance is mainly originated 
from the structure collapse of LiCoO2 at the surface 
induced by chemical redox reaction between the highly 
reactive LiCoO2 surface and PEO, indicating that struc-
ture stability of LiCoO2 surface and interface is criti-
cal for high-voltage application [53]. When the voltage 
reaches 4.5 V or even higher potentials, both the degra-
dation of LiCoO2 and the intensively decomposition of 
PEO could be the reasons for the capacity further fading. 
The results show that LAF coating layer can stabilize 
LiCoO2 by protecting them from chemical degradation 
during cycling and minimize the electrochemical decom-
position of PEO at high voltage. This study provides an 
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original view of the batteries failure and presents a facile 
strategy to extend the compatibility of PEO-based SPE 
with high-voltage cathode materials.
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