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ABSTRACT: In cluster research, determining the ground-state structure of
medium-sized clusters is hindered by a large number of local minimum on potential
energy surfaces. The global optimization heuristic algorithm is time-consuming due
to the use of DFT to determine the relative size of the cluster energy. Although
machine learning (ML) is proved to be a promising way to reduce the DFT
computational costs, a suitable method to represent clusters as input vectors is one of
the bottlenecks in the application of ML to cluster research. In this work, we
proposed a multiscale weighted spectral subgraph (MWSS) as an effective low-
dimension representation of clusters and build an MWSS-based ML model to
discover the structure−energy relationships in lithium clusters. We combine this
model with the particle swarm optimization algorithm and DFT calculations to
search for globally stable structures of clusters. We have successfully predicted the
ground-state structure of Li20

■ INTRODUCTION
Serving as a bridge between crystals and isolated atoms,
clusters are widely studied to unveil the relationship between
structure and property in materials science.1 Determining the
ground-state structure of medium and large clusters is a crucial
and difficult task in cluster physics. The atomic coordinates are
an important factor affecting the binding energy. Thus, the
above problem can be considered as the optimization problem
of atomic coordinates. Unfortunately, algorithms based entirely
on gradient descent generally could not perform very well in
the above tasks because there is a large number of local minima
on the potential energy surface of such clusters.2 Therefore, it
is of practical significance to search for (or predict) structures
with global minimum energy or near minimum energy for
clusters.
To efficiently achieve the above objectives, several

optimization algorithms including heuristic algorithms are
proposed, such as lattice-based search,3 stochastic surface
walking,4 genetic algorithm,5−7 simulated annealing,8 and
particle swarm search (PSO).9 Among all these algorithms,
PSO is a relatively efficient one in searching for near-ground-
state clusters. Call et al. predicted the global minimum
structures of LJ26, Si2H5

−, and OH−(H2O)3 chemical systems
by PSO.10 Ma et al. successfully developed a PSO-based
procedure and finished the structure prediction task on
clusters.9,11 However, the above methods are usually computa-
tionally expensive since they involve first-principles calcula-
tions of numerous local minimums to determine the formation
energy of clusters. Fortunately, machine learning (ML) is
expected to provide an efficient approach for structural

prediction due to its ability to predict the formation energy
of materials.12

ML is a statistical method that can extract the pattern of
input data. In recent years, ML has achieved great success in
various fields, including computer vision, natural language
processing, video processing, etc.13 It seems feasible to train
the model to understand the structure−energy relationship
pattern. When applying the ML model, feature engineering,
which aims to transform the representation of data, is naturally
introduced. An appropriate data representation or descriptor is
helpful for the learning algorithm to complete the task.
In materials science, descriptors are designed around

Cartesian coordinates, atomic types, and physical proper-
ties.14−16 The most straightforward representation of a cluster
is the Cartesian coordinates and the element type of each atom
in the cluster. This representation loses the information of the
translational symmetry and rotational symmetry of the cluster.
Feeding a cluster that has been translated or rotated into the
model may give inconsistent results. In addition, if the above
representation is adopted, the output of the model depends on
the order of atomic coordinates inputted.14 Therefore, we need
a feature engineering method that maps multiple inputs with
symmetry to the same representation. Moreover, our
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representation needs to have a relatively low dimension to
avoid the “curse of dimensionality” in ML. Faced with the
above constraints, many effective ML methods have been
proposed, such as Gaussian-approximation potentials with the
SOAP descriptor,17 crystal-graph convolutional network
(CGCNN),18 moment tensor potential,19 atomic cluster
expansion,20 equivariant message-passing NN,21 and non-
parametric many-body force fields.22 Meanwhile, graph theory,
a prime subject of discrete mathematics, provides an effective
method.
Graph theory models real things as nodes, or vertices, and

pairwise relationships between nodes (i.e., edges), which has
been widely used in social network analysis,23 web page
ranking,24 landscape connectivity,25 and so on.
In the fields of chemistry and materials science, many

problems are naturally suitable for processing with graph
theory by treating atoms as nodes and the interaction between
atoms as edges.26−29

Graph theory has different branches in mathematics, such as
geometric graph, algebraic graph, and topological graph.30,31

Geometric graph theory focuses on graphs drawn on the
Euclidean plane and their geometry property. Algebraic graph
theory is the combination of graph theory and linear algebra. It
studies graphs via eigenvalues, eigenvectors, and characteristic
polynomials of the adjacency matrix and the Laplace matrix of
a graph. Topological graph theory concerns the embeddings
and immersions of graphs. As for application, geometric graph
theories are relatively concise and easy to handle. However,
treating a graph as a geometric structure is not conducive to
numerical calculations. Moreover, the elements in the
traditional adjacency matrixes are either 0 or 1, which
represents whether the two nodes are connected or not.
Such a representation oversimplifies the complex interaction
between atoms. For example, it cannot estimate the interaction
strength between pairwise atoms. To overcome the above
shortcomings, different techniques are proposed. Weighted
graphs using radial basis functions to represent graph edges
were proposed based on the flexible rigidity index (FRI).32−34

Mathematically, weighted graphs are complete graphs, and the
weight of edges increases with the decrease of the Euclidean
distance between two nodes. The physical interpretation of
such weighted edges is that the closer the Euclidean distance
between the pairwise atoms, the stronger the interaction
between them and the greater the weight reflected on the
weighted graph. Additionally, multiscale FRI was introduced
into weighted graphs. This technique extends the weighted
graph to a multiplex graph with multiple edges, giving it the
ability to capture multi-scale interatomic interactions.35 Multi-
scale technology has been proven to be feasible in expressing
the intramolecular and intermolecular interactions of bio-
molecules, including electrostatic interactions, van der Waals
interactions, hydrogen bond interactions, etc.32,36,37

This work aims to introduce a multiscale weighted spectral
graph (MWSS) as an efficiently low-dimensional representa-
tion of cluster structures. A series of subgraphs, adjacency
matrices, and Laplace matrices are constructed from a single
cluster, and the statistics of eigenvalues are used to depict the
structural information of that cluster. An ML model is
constructed to understand the structure−energy relationship
of clusters based on the MWSS descriptor, which is called
spectral graph learning (SGL). For the usual force field studies,
the model is required to predict the energy of the system and
the force on each atom, but for PSO, the model needs to

predict and compare the energy of different clusters without
force information. Thus, we are more concerned with the
energy (or stability) of the cluster, and the model here does
not yield forces, only energies. Furthermore, an SGL−PSO−
density functional theory (DFT) system is constructed by the
combination of SGL, PSO, and DFT calculation to predict
structures with global minimum energy or near minimum
energy for clusters. Over the past few decades, lithium-ion
batteries have been widely used in various portable electronic
devices.38 The formation of lithium dendrites during charging
and discharging can cause a short circuit in the battery and
bring about safety issues.39 Thus, Li clusters are used to test in
this article. Trained on Li clusters with 3−10 atoms, our model
can not only predict the binding energies of clusters of the
same number of atoms but also rank the binding energies of
clusters with more atoms. By using our model to replace the
DFT calculation in the PSO algorithm, we successfully
predicted the ground-state structure of Li20. Our work lays
the foundation for understanding lithium nucleation and
dendrite growth by computational simulation.

■ METHOD
Multiscale Weighted Geometric Subgraph. In the

present work, we focus on the SGL in the representation of
pairwise interactions within lithium clusters. For a given Li
cluster with N atoms, a graph G(V,E) can be defined by
regarding the atoms as the vertices and regarding the
interactions between atoms as the edges. The vertex set of G
can be defined as follows

V r r R i N; 1,2,3, ...,i i
3= { | = } (1)

where V is the set containing N vertices and ri is the
coordinates of the ith atom. All the atoms are uniquely
identified by its coordinate so that any atom within the cluster
can be considered individually. In order to keep the physical
meaning of the interaction, the weighted edge Ek is introduced
as follows

E r r

i k j k N k N

( )

; 1, ; 1,

k i j= { |

= [ ] [ ]}

where ri − rj is the Euclidean distance between the ith and jth
atoms. Φ(ri − rj) is the radial basis function, which represents
the interaction between the ith and jth atoms. Generally, Φ
should meet the following requirements

r rlim ( 1)
r r

i j
0i j

=
(3)

r rlim ( 0)
r r

i j
i j

=
(4)

There are many radial basis functions meeting those
requirements. In this work, only the generalized exponential
functions (eq 5, called Gexp) and generalized Lorentz
functions (eq 6, called GLor) are adopted.32
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G Gexpor Lor= (7)

The parameter ηi,j within eqs 5 and 6 is the characteristic
distance between atoms and κ and ν are two hyperparameters.
These parameters allow the model to construct multi-scale
interactions. To obtain the interactions on each atom in the
cluster, a set of multiscale weighted geometric subgraphs
(MWGSs) denoted as Gi(V,Ei), i = 1,2,3,...,N is introduced for
an N-atom Li cluster. The ith vertex in subgraph Gi is the only
vertex that has a degree greater than 1. It is named the star in
graph theory. Specifically, a star with three edges is called a
claw, as shown in Figure 1a. Similar to the WCG centrality

proposed by Bramer and Wei,37 our geometric centrality of the
ith vertex in Gi is denoted as

C r r( )i
G

j i
i j

i =
(8)

where Ci
Gi characterizes the total interactions between the ith

atom and its environment (i.e., all other atoms around it). Gi
allows us to consider the interactions in a cluster with fine
granularity. In the present work, we use two radial functions,
namely, the generalized exponential and generalized Lorent-
zian functions, simultaneously to extract the complex
interaction information between pairs of Li atoms. The
distances between the same pair of atoms in the three-
dimensional Euclidean space can be projected to different
function spaces by this approach, thus enabling the interactions
to be carved from different perspectives.
Multiscale Weighted Spectral Subgraphs. The MWGS

gives us an intuitive and effective geometric representation of
the cluster. It is very interesting to construct an equally
effective description from an algebraic perspective. In
mathematics, algebraic graph theory is the study of graphs by
introducing the methods of linear algebra. Specifically, the
study of graphs is achieved by using matrices to describe the
relationships of the vertices of the graph and then by analyzing
the characteristic spectrum of the matrices. In this work, we
make use of two very important matrices, namely, the
adjacency matrix and the Laplace matrix, to describe the
MWGS. In a subsequent study, we specifically investigate the
structural information stored in the subgraph spectra, which
are named MWSSs in this study.
Multiscale Weighted Adjacency Matrix. Based on the

discussion about weighted geometric subgraphs above, the
adjacency matrix of Gi using weighted edge function Φ is
denoted as

l
m
ooo
n
ooo

r r k i j i i j N
(A )

( ), if ; , 1,

0, otherwise
i kj

k j=
= [ ]

(9)

Mathematically, Ai
Φ is a symmetric non-negative matrix. The

eigenvalues and the corresponding eigenvectors of the
adjacency matrix are denoted as λj

A, j = 1,2,3,... and μj
A, j =

1,2,3,.... Since for each eigenvalue λj
A, its opposite −λj

A is also an

Figure 1. Illustration of weighted subgraph G1 and its matrix
representations. (a) G1 is a subgraph describing the interactions
between atom 1 and the other atoms. The vertices with indexes 1, 2,
3, and 4 represent lithium atoms within the cluster; the color of the
central atom is red and the others are green. The edges are weighted
by the function Φij, which represents the interactions between pairs of
atoms. (b) Adjacency matrix representation and (c) Laplacian matrix
representation of G1.

Figure 2. Workflow of the feature generation by using the spectral graph method. The first column describes a Li cluster with n atoms. In the
second column, n subgraphs are obtained by considering the interaction of each atom with other atoms separately. In the third column, the
adjacency matrix A( )i j, and the Laplacian matrix L( )i j, are constructed using two different subgraph weights, namely, the generalized exponential
function (Gexp) and the generalized Lorentz function (GLor). Subsequently, the statistics of the matrix eigenvalues are used to represent the
corresponding subgraphs (fourth and fifth columns). In the last column, the statistical information of all subgraphs is combined to become the final
features.
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eigenvalue, only positive eigenvalues are considered in this
article.
Multiscale Weighted Laplacian Matrix. The adjacency

matrix visually depicts the connection characteristics of the
graph. From the perspective of signal processing, this can be
thought of as describing the graph from the perspective of the
time domain. On the other hand, the Laplacian matrix is
related to the frequency domain characteristics of the task and
the graph.40 The Laplacian matrix of Gi is denoted as

L D Ai i i= (10)

l
m
ooooo
n
ooooo

D
r r k i k j

( )
( ), if

0, otherwise
i kj j

k j
=

= =

(11)

l

m

ooooooooo

n

ooooooooo

L

L k j

r r k i j i( )

, if

( ), if ;

0, otherwise

i kj

l l k
lj

k j

,

=

=

=

(12)

where Di
Φ is the degree matrix, which reflects the degree of

each node within the weighted subgraph. Figure 1 shows the
adjacency matrix and Laplacian matrix for weighted subgraph
G1 for Li4. The eigenvalues and the corresponding eigenvectors
of the Laplacian matrix are denoted as λj

L, j = 1,2,3,... and μj
L, j

= 1,2,3,...
Mathematically, λj

L and μj
L behave differently compared to λj

A

and μj
A. Since the Laplacian matrix is positive-semidefinite

symmetric and diagonally dominant, all its eigenvalues λj
L are

non-negative. Moreover, the number of zero eigenvalues equals
the number of independent components. Also, the second-
smallest eigenvalue, i.e., the first non-zero eigenvalue, of the
matrix is called the Fiedler value. The Fiedler value is
considered to be related to the connectivity of the graph. It
has been used to analyze the brain structure,41 the stability of
the power system,42 and so forth.
MWSS-Assisted Feature Generation. Figure 2 shows the

process of transforming a lithium cluster with n atoms into ML
input features, which is called feature engineering. When we
obtain a cluster with n atoms, the interaction of each atom with
the surrounding n−1 atoms is considered and n subgraphs that
contain the same vertices but with different connections are
constructed, as shown in Figure 2 (second column). Then,
multiscale weighted adjacency matrices (Ai

Φ) and multiscale
weighted Laplacian matrices (Li

Φ) can be established according
to eqs 9 and 12. Note that two different weight functions, e.g.,
the exponential function and the generalized Lorentz function,
are used in this work, so that four matrices can be constructed,
including two adjacency matrices and two Laplacian matrices
with different weight functions, as shown in the third column
of Figure 2. Suppose that we get all the eigenvalues {λ} of a
certain matrix, Ai

Φ or Li
Φ. A statistical representation of a matrix

is adopted by calculating nine statistical values, including
summation, minimum, maximum, mean, median, standard
deviation, variance, and the numbers and the sum of squares of
the eigenvalues of that matrix. Note that for both the adjacency
matrix and Laplacian matrix, only positive eigenvalues are
considered during the statistic. All these statistical values can
be divided into four groups, e.g., Ai

Gexp, Ai
GLor, Li

Gexp, and Li
GLor,

where A and L mean adjacency matrix and Laplacian matrix,

subscript i is the subgraph of the ith atom, and superscript
indicates radial basis function. The nine statistical values of
each group’s statistical representation of matrices are
calculated. Such statistical values are combined to form the
36-dimension ML feature of a cluster as shown in the last
column of Figure 2.
ML Algorithm. Assume that the feature engineering above

encodes structural information of the Li cluster into a low-
dimension feature, x ∈ Rn. The ML algorithm maps the feature
to the binding energy of the cluster, which is regarded as a
regression problem in ML. This task can be formally expressed
as

y f xargmin ( , ( ; ))
i

i i
train (13)

where i is the ith sample in the training set, f:Rn → f is a
reflection given by the learning algorithm, θ is the learnable
parameter that the learning algorithm learns from the training
data, and is the loss function that determines the difference
between the predicted value and the true value. Different
learning algorithms are proposed for regression problems. The
support vector machine (SVM) is mostly used in classification
problems. Support vector regression (SVR) extends SVM from
a classification problem to regression problem.43 The
regression tree is another technique for this problem. It uses
a process called binary recursive partitioning to estimate the
output. Usually, a single regression tree is considered a weak
learner and ensemble learning methods are then used to
improve its performance. Ensemble learning uses multiple
weak regression models to jointly determine the final output.
Ideally, in order to benefit as much as possible from ensemble
learning, different weak regression models need sufficient
performance and large diversity, but the two are usually in
conflict. Ensemble learning is divided into two main directions
in regression problems: the gradient boosting regression
(GBR),44 which aims to train a series of interrelated strong
learners, and the random forest regression (RFR),45 which
aims to increase the diversity of learners as much as possible.
As for loss functions, several functions are used in regression
problems, such as mean absolute error (MAE), mean squared
error, and so on. Loss functions can also be used to evaluate
the performance of the model, and there are other metrics of
the performance that could not be loss functions because they
cannot perform gradient optimization, such as classification
accuracy. Here, two metrics, MAE and Pearson correlation
coefficient (PCC), are used. The MAE is given as

N
y f xMAE

1
( ; )

i

N

i i
1

= | |
= (14)

where N is the number of samples and yi and f(xi;θ) are the
label and the prediction value of the ith sample, respectively.
Also, PCC measures the linear correlation between two sets of
data X and Y, and it is given as

X Y
PCC

COV( , )

x y
=

(15)

where COV (X, Y) is the covariance between random variables
X and Y and σx and σy are the standard deviation of X and Y,
respectively.
Here, the goal of our model is to predict the binding energy

of clusters. The binding energy represents the energy at which
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isolated atoms in a vacuum combine to form a cluster, which is
denoted as

E E nE n( )/bind cluster atom= (16)

where Ecluster and Eatom are the energy of a cluster and an
isolated atom (here, Li atom), respectively, and n is the
number of atoms in the cluster. Since different clusters have
different atomic numbers, we use the average energy, making
the clusters with different atomic numbers comparable.
PSO Algorithm. The PSO algorithm is a heuristic method

that simulates a biological population searching for food.
Individuals in the population decide the direction of the next
search based on the information they have obtained and the
information obtained by the entire population. Here, every
cluster is regarded as a particle. The above process can be
described as

x x vi j
t

i j
t

i j
t

,
1

, ,
1= ++ +

(17)

v wv c r s x c r i x( best ) ( best )i j
t

i j
t

i j
t

i j
t

i j
t

i j
t

,
1

, 1 1 , , 2 2 , ,= + ++

(18)

where xi,j
t represents the jth dimension of the ith individual in

the time step t. w, c1, and c2 are constants and r1 and r2 are
random numbers, sbest is the coordinate of the best structure
found by the swarm, and ibest is the best structure found
during the first t-generation of the ith cluster.
DFT Calculation. The plane-wave projector augmented

wave (PAW) method, which is implemented in the Vienna Ab
initio Simulation Package, is used to perform DFT calculations.
The energy cut-off is 520 eV. The exchange−correlation
potential is the generalized gradient approximation with the
Perdew−Burke−Ernzerhof parameterization. The PAW pseu-
do-potential is used.
SGL−ML−PSO−DFT System. Using the methods de-

scribed above, an SGL−ML−PSO−DFT algorithm is
proposed. The workflow of the system is shown in Figure 3.
The red blocks represent the start point or the end point of the
system. First, the training data are generated and an ML model
is trained as described in the blue blocks. Once the model is
trained, the ML−PSO procedure could be applied. In the PSO
procedure, we generated different cluster structures from

crystal structures and iteratively generated new structures
according to eqs 17 and 18. After N iterations, ML models are
used to select clusters with lower energy from the resulting
structures. Finally, such clusters are optimized using DFT
calculations to obtain more stable structures.
Data Sets. In this article, the data set published by Chen46

is adopted. There are 138,617 Li clusters, and their binding
energy is generated by PSO−DFT. Among them, there are
16,617 lithium clusters containing 3−10 Li atoms (denoted as
Li3−10), 1000 lithium clusters containing 20 atoms (denoted as
Li20) and 1000 lithium clusters containing 40 atoms (denoted
as Li40).
Here, Li3−10 clusters are first used to train the model and test

the effectiveness of the ML methods. A train-validation-test
data splitting scheme is applied to optimize and test the model.
All Li3−10 clusters are randomly divided into an 80% training
set, a 10% validation set, and a 10% test set. The training set is
used to optimize the parameter of the model. The validation
set is used to optimize the hyperparameters including
hyperparameters of the ML model and parameters of SGL.
The testing set is used to test the performance of our method.

■ RESULTS AND DISCUSSION
SGL Parameterization. According to eqs 5 and 6,

generally our MWSSs could be characterized by three
parameters τ, κ and ν. κ and ν refer to the kernel order of
generalized exponential and generalized Lorentz kernels,
respectively. Additionally, τ is used to characterize ηkk′, which
is defined as ηkk′ = τ(rk + rk′), where rk and rk′ are the van der
Waals radii of element type k and element type k′, respectively.
In our situation, ηLiLi = 2τ(rLi). Since rLi is a constant, η is
regarded as a parameter to be optimized. Based on the
previous work, the recommended values for the three
parameters are shown in Table 1:

Here, the train-validation scheme was used to find the best-
fit parameters. Parameters η = 2, κ = 2.5, and ν = 2 were used
in the following experiment. The details for determining the
combination of parameters are described in the Supporting
Information.
ML Model. After determining the parameters of SGL, the

atomic position information of each Li cluster is encoded as a
vector, e.g., features. The ML model was trained to learn the
relation between the features and their corresponding binding
energy. The regression tree is a classic ML model and
ensemble learning coupling a series of decision trees for better
performance. Here, two different ensemble-learning models
GBR and FRF were used. We trained the two different models
on the same Litrain, hyperparameter optimization on Lival and
finally measured the performance of the model on Litest. In
order to reduce the stochastic error within the ML model, each
model was trained 10 times repeatedly with all the hyper-
parameters unchanged and the output was averaged. Feature
normalization was also implemented when training the model.
The hyperparameters of GBR and FRF are described in the

Figure 3. Flowchart of the ML−PSO−DFT algorithm. Here, the
function of the ML model is to predict and compare the binding
energy of the structures generated by PSO. After iterations, the final
selected candidate structures are further optimized by DFT
calculations.

Table 1. Ranges of Hyperparameters Recommended for
SGL

parameter domain

Η {0.5,1.0,...,6}
κ {0.5,1.0,...,6}∪{10,15,20}
Ν {0.5,1.0,...,6}∪{10,15,20}

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.3c00272
J. Phys. Chem. A 2023, 127, 2051−2059

2055

https://pubs.acs.org/doi/suppl/10.1021/acs.jpca.3c00272/suppl_file/jp3c00272_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpca.3c00272/suppl_file/jp3c00272_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c00272?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c00272?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c00272?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c00272?fig=fig3&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.3c00272?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Supporting Information, and the performances of the two
models on Litest are shown in Figure 4.
According to Figure 4, the MAE loss and Pearson’s

correlation coefficient (PCC) of the GBR model on the test
set were 0.020 and 0.995, while the RFR model had a higher
MAE loss (0.034) and lower PCC (0.988). This indicated that
the GBR model was more effective for the organization of
regression trees on this issue. Since the GBR model can
achieve a better performance, we used the GBR model in the
following section.
As mentioned above, we applied the multi-scale technique

by using two different radial basis functions eqs 5 and 6 to
describe the interaction between atoms simultaneously. For
each radial basis function, we constructed a group of adjacency
matrices and a group of Laplacian matrices to extract the
feature. In all, our feature generates from four groups of
matrices: Ai

Gexp, Ai
GLor, Li

Gexp, and Li
Lor. (The meaning of the

symbol is given above.) We consider different combinations of
matrices to generate structural features to test the impact of
these features on the model performance and thus validate the
effectiveness of this multi-scale approach. Table 2 presents the

result of our ablation study. When only considering one type of
matrix group, the model could not obtain a very good
performance. Then, the features generated from matrix groups
that used the same radial basis were combined (AGexp + LGexp
and AGLor + LGLor). Such a composite combination reduces the
MAE of the Gexp and GLor radial basis functions to 0.050 and
0.041, respectively, compared to using only one type of the

matrix group. Furthermore, the PCC was increased to 0.979
and 0.986 for these two functions. For a graph, its adjacency
matrix and its Laplacian matrix contain the same amount of
information, but their eigenvalues are very different. Therefore,
considering the eigenvalues of the adjacency matrix and the
Laplace matrix at the same time can better reflect the structural
information of clusters even without using the multiscale
technique. The last three rows in Table 2 show the effects of
the multiscale technique. Compared with the absence of the
multi-scale technique, the MAE of the model decreased from
0.050 (using Gexp function alone) and 0.041 (using GLor

function alone) to 0.020, respectively, and the PCC increased
from 0.979 and 0.986−0.995. The above ablation experiments
showed that it was reasonable to consider the eigenvalues of
the adjacency matrix and the Laplacian matrix at the same time
and to use the multi-scale technique to describe the
interatomic interaction.
Performance on Lin. The previous section indicated that

our model is capable of predicting the binding energy of small
Li clusters (atom number ranges from 3 to 10). To improve
the accuracy of the model, the model was trained on a large
amount of labeled (binding energy) data. However, for a
cluster with a particular structure, DFT calculations are usually
required to obtain its binding energy. In addition, the time of
DFT calculation increases rapidly with the increase in the
number of atoms contained in the cluster. It is difficult to build
data sets that contain binding energies of a large number of
clusters of medium and large size. So, we used Li20 and Li40 to
further test our model trained on Li3−10. Additionally, Chen

46

developed a topological fingerprint (TF) to estimate the
binding energy of clusters using the topological graph. Because
Chen’s way of dividing data sets was different from ours, we
reproduced his method as a comparison. The performances of
SGL and TF are shown in Figure 5. Both methods had larger
MAEs compared to the MAE of Li3−10. The larger MAEs for
both two methods were due to systematical errors. However, in
our work, it is more important to judge the relative value of the
binding energy of different clusters than to predict the absolute
value of the binding energy; thus, PCC is a more reasonable
metric. From this point of view, the SGL method out-
performed the TF method. Meanwhile, the feature dimension
of SGL was 36 dimensions, lower than that of TF with 400
dimensions. An SVR model was also implemented for the same
tasks, and its performance is described in the Supporting

Figure 4. Comparison between ML predictions and DFT calculations of binding energy. (a) GBR model on the test set of Li3−10. (b) RFR model
on the test set of Li3−10.

Table 2. Result of the Ablation Studya

composition of features MAE PCC

Aexp 0.049 0.970
Lexp 0.155 0.876
ALor 0.060 0.928
LLor 0.072 0.905
Aexp + Lexp 0.050 0.979
ALor + LLor 0.041 0.986
Aexp + Lexp + ALor + LLor 0.020 0.995

aThe first column denotes the features generated by Aexp, Lexp, ALor,
and LLor, respectively, where Aexp + Lexp denotes the combination of
Aexp features and Lexp features and Aexp + Lexp + ALor + LLor denotes the
combination of features generated by all four sets of matrices. MAE
and PCC are used as metrics.
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Information. The CGCNN model was also implemented for
the same task. Compared to models using deep learning, our
ML approach was comparable in PCC. In addition, deep
learning models are often sensitive to the choice of
hyperparameters and may require more efforts to tune the
parameters for a particular task. The details and results of the
model are presented in the Supporting Information.
Searching for the Ground-State Structure of Li20. We

implemented the ML−PSO−DFT system to search for the
Li20 structure with the lowest energy as a case study. First, we
generated different structures using ML−PSO with a
population of 2000 and a generation of 15 and the ML
model trained above. The ML model determined the energy of
each structure and guided the generation. After generation, the
ML model determined the three clusters with the lowest
energy among all the structures. Finally, all three clusters were
further optimized using DFT. Figure 6 shows the output of the

ML−PSO−DFT system. Our predicted ground-state structure
of Li20, as shown in Figure 6a, is composed of three centered
trigonal prisms with five additional capped atoms. This result is
consistent with the structure of the ground state obtained by
DFT−PSO9 and by Tabu’s search.47

■ CONCLUSIONS
In conclusion, ML for cluster physics critically relies on
appropriate data representations, which should not only reflect
the collective characteristics of the structure but also maintain
the physical invariance. In this work, MWSSs were proposed as
a low-dimension representation of clusters. Unlike conven-
tional adjacency matrices, we introduced the multiscale
technique to extract information on the interaction between
pairwise atoms. We combined SGL with different ML
algorithms and tested their performance on binding energy
prediction. By incorporating the GBR ML algorithm, the
binding energy of lithium (Li) clusters can be accurately
determined, and expensive DFT calculations can be avoided.
Then, in a practical application, we embed SGL−GBR as an
ML model into the PSO algorithm and find the global ground
state of Li20. Since the morphology of Li clusters affects the
nucleation of Li dendrites, our work may have positive
implications for the study of Li dendrite formation.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpca.3c00272.

Figure 5. Performance comparison of models using different feature engineering methods. (a) SGL method on Li20. (b) SGL method on Li40. (c)
TF method on Li20. (d) TF method on Li40.

Figure 6. Three clusters obtained by ML−PSO−DFT. (a) Ground-
state structure of Li20. (b,c) Metastable structures of Li20.
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