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Two-dimensional ferromagnetic (2DFM) semiconductors
(metals, half-metals, and so on) are important materials for
next-generation nano-electronic and nano-spintronic devices.
However, these kinds of materials remain scarce, “trial and
error’” experiments and calculations are both time-consuming
and expensive. In the present work, in order to obtain the
optimal 2DFM materials with strong magnetization, a machine
learning (ML) framework was established to search the 2D
material space containing over 2417 samples and identified 615
compounds whose magnetic orders were then determined via
high-throughput first-principles calculations. With the adoption
of ML algorithms, two classification models and a regression
model were trained. The interpretability of the regression
model was evaluated through Shapley Additive exPlanations
(SHAP) analysis. Unexpectedly, it is found that Cr,NF, is a
potential antiferromagnetic ferroelectric 2D multiferroic ma-
terial. More importantly, 60 novel 2DFM candidates were
predicted, and among them, 13 candidates have magnetic mo-
ments of > 7ug. Os,Clg, FezGeSe,, and MngN3S, were predicted
to be novel 2DFM semiconductors, metals, and half-metals,
respectively. With the adoption of the ML approach in the
current work, the prediction of 2DFM materials with strong
magnetization can be accelerated, and the computation time
can be drastically reduced by more than one order of
magnitude.

Keywords: 2D ferromagnetic, Machine learning, High through-put
screening, DFT, Model interpretability
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INTRODUCTION

Two-dimensional ferromagnetic (2DFM) materials are endowed with
several unique properties that make them promising candidates for po-
tential applications in devices such as sensing, memory technologies, 2D
spintronics and Valleytronics]’4. According to the Mermin-Wagner the-
orem, under an isotropic Heisenberg model at finite temperatures, long-
range magnetic order must be suppressed because of thermal fluctua-
tions”. However, the recent discoveries of 2DFM, for example, the Crls,
Cr,Ge,Teg, MnSe,, and FezGeTe, monolayers, have attracted widespread
attention’ ">, Numerous 2D materials have been computationally
predicted by adopting the high-throughput density functional theory
(DFT)"?, which facilitates the establishment of a few public and open-
source 2D materials databases, e.g. the Computational 2D Materials
Database (C2DB)'%, the 2D Materials Encyclopedia (2DMP)'°, the Ma-
terials Cloud two-dimensional crystals database (MC2D)“’, all of which
are constituted with hundreds to thousands of samples. Although these
databases cover the dynamic and thermodynamic stabilities of 2D
materials as well as electronic structure information, there still exist two
problems in the study of magnetism. Firstly, the material classification of
2DFM in the database is not accurate enough; all possible antiferromag-
netic (AFM) orderings were not considered to accurately determine the
actual magnetic ground state, and the calculation of magnetic moments
still remains imprecise. Secondly, only a few 2DFM candidates have been
experimentally synthesized up till now, and the magnetizations of these
2DFM materials are fairly weak. This indicates that the information on
magnetism in the database does not provide accurate guidance for
obtaining excellent 2DFM materials in experiments. Trial-and-error ex-
periments and calculations are time-consuming and expensive.
Machine-learning (ML) algorithms, which could provide many new
candidates with excellent properties for experiments, turn out to be more
rapid and efficient methods for 2DFM material discovery. In contrast to
traditional first-principles calculations based on DFT that need to solve the
many-body Kohn-Sham equation, ML approaches are big data-driven and
can map the given material features to desired properties 17 ML is endowed
with inherent advantages for efficient searching for target properties
among enormous material spaces. This novel scientific paradigmlx has
been successfully applied to the prediction of various functional materials,
such as lithium batteries'”, photovoltaic materials’’, and catalystsQl.
Despite the advantages of ML algorithms for 2D functional materials, they
have rare applications in 2D magnetic systems, which is mainly ascribed to
the lack of suitable feature descriptors for 2D magnetic material systems.
Descriptors based on several feature vectors from elemental properties and
compositions exhibit excellent performance in property prediction,
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however, they do not work well on a small dataset, including samples with
various crystal structures. Many common descriptors, such as property-
labeled materials fragments (PLMF)”’, materials graph networks”’, and
crystal graph convolutional neural networks®*, show excellent perfor-
mance for various structures but require large datasets. Furthermore, most
of these features lack important information on magnetic and electronic
properties such as unpaired d orbital electrons”.

ML algorithms have been adopted to investigate magnetic proper-
ties in a few published studies. Through on-the-fly interpretable ML,
2DFMs with high Curie temperatures were discovered by Wang et al’®.
Acosta et al. proposed an ML-based strategy to analyze and predict
magnetic ordering in 2D materials”’. Kabiraj et al. developed a fully
automated, graphics processing unit (GPU)-accelerated, end-to-end ML
model for the 2DFM materials with high Curie pointszx. An adaptive
framework to accelerate the discovery of 2D intrinsic ferromagnetic
(FM) materials was developed, in which ML was combined with high-
throughput DFT calculations®®. A ML-assisted hierarchical screening
strategy for predicting magnets with high stability and large anisotropy
energy was proposed by Sen et al’’. Nonetheless, it remains a
tremendous challenge for ML approaches to accurately predict the
magnetic and electronic properties of 2D materials.

In the current work, a data-driven ML strategy was presented to
study the magnetism in 2D materials. In contrast to traditional DFT
calculations, the current work focused on exploring the material prop-
erty relationship to establish the simplest correlation between the
magnetic structure and features such as crystal structure, composition,
and elemental properties. Three ML models were tranied using DFT
calculations and a recently updated database of 2D materials to obtain
features capable of classifying 2D materials as NM, FM, or AFM and
predicting 2DFMs with strong magnetization. Our strategy mainly in-
cludes three aspects: (i) an ML model was firstly developed to distin-
guish magnetic candidates from nonmagnetic candidates according to
their composition and elemental properties and built a model to classity
the FM and AFM materials in a high-throughput DFT-calculated
dataset; (ii) on the basis of the unpaired d orbital electrons of the
transition metal (TM) and features strongly related to the structure, an
ML regression model was established to predict the net magnetic
moment of 2DFMs unit cell; and (iii) with the adoption of the estab-
lished ML model, the discovery of novel 2D magnetic materials was
expedited with strong magnetization.

RESULTS AND DISCUSSION

Machine learning computational framework We first described the
workflow of our ML code, as shown in Fig. 1. Stable 1617 samples were
extracted from the C2DB dataset, of which 1292 samples were labeled
as nonmagnetic 2D materials and 325 as magnetic. This imbalanced
dataset could not be used to train the classification models. Therefore,
800 2D magnetic materials were randomly selected from the 2DMP
database. The new dataset included 2417 samples that were used to pre-
train the classification model for magnetic/nonmagnetic 2D materials.
After obtaining model N-M, the 615 samples with magnetic moments of
> 1ug were fed to high-throughput calculations to train the FM-AFM
classification model. In this step, an ferromagnetic/antiferromagnetic
(FM/AFM) classification model and a dataset of 2D materials with
precise magnetic moments were obtained. In the next step, the AFM 2D
materials were discarded and a regression model of magnetization
(model-R) was trained. 545 stable magnetic samples were selected from
the recently updated C2DB and duplicate samples removed from the
previous database. Non-prior samples were adopted as a validation set
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to predict new materials. Finally, 2D materials with magnetic moments
of > 7ug were selected and defined as strongly magnetized materials.
Our hierarchical filtering process does not depend on empirical pa-
rameters or physical intuition, and the database is updated in real time.
Finally, the interpretability of the model was analyzed. Our ML pre-
dictions and DFT calculations did not target the Curie point since
Kabiraj et al. have already calculated this through graphics processing
unit (GPU) acceleration”®. Additionally, the C2DB database does not
contain the Curie point, and no experimental values have been
reported for the magnetic transition critical temperatures of most
2D materials.

Classification model for magnetic/nonmagnetic and ferromagnetic/
antiferromagnetic materials The ultimate goal of the current work
was to develop novel 2DFM materials with strong magnetization.
Therefore, a two-step ML model was constructed. The first step of ML
was to classify 2D materials into magnetic and nonmagnetic groups
according to their class labels of magnetic states in the C2DB and
2DMP databases, and data-M-N was adopted for this task. Model M-N
performs binary classification to distinguish magnetic and nonmagnetic
2D materials from the dataset data M-N. The following four algorithms
were selected to train this binary model: Bernoulli Naive Bayes (BNB),
K-Nearest Neighbor (KNN), Support Vector Machine Classifier (SVC),
and Random Forest Classifier (RFC). All the ML algorithms used in the
present work were implemented through the Scikit-learn library
(version 1.1.3)44. Since the dataset used in the first model was of
medium size, the training and test sets were randomly split at a ratio of
7 : 3. The ML models were trained with the adoption of 2D material data
in the training set, and the generalization ability and accuracy of the ML
model were tested using 2D material data in the test set. A 10-fold cross-
validation approach was used to optimize the hyperparameters in all the
models. The performance metrics of the test set for all the four models
are presented in Table 1. As shown, KNN and BNB exhibit similar
metrics. SVC with the radial basis function (rbf) kernel performed better
than KNN and BNB. The RFC classifier achieved the best performance
for all the metrics. The receiver operating characteristic (ROC) curves
and typical confusion matrices for the four classification tasks are
shown in Fig. 2. The optimized hyperparameters for all the models are
presented in Table S2, and the Supplemental Information (SI) details the
classification techniques utilized. The classification area under the curve
(AUC) value of the RFC model for the non-magnetic/magnetic classi-
fications exceeded 90% after re-examination of distinguishable sam-
ples. The confusion matrix for each classifier presents the counts of the
classes predicted using the four algorithms versus the true classes of the
test set. Excellent performance was achieved, particularly for the RFC
classification, with an AUC value of 0.94.

To further verify the generalizability of the model, a dataset
containing 10 2D materials was constructed: Crlz, CrGeTes, PrTes,
TiPbgOy, TaSe, InCls, TiGeTeg, KB(CO3)4, Ago WS4, and NaFeAs. In
this small validation set, Crls and CrGeTes are known 2D magnetic
materials, and the other eight materials are labeled as nonmagnetic
materials and are taken from 2DEP. The test results are presented in
Table S3, where the boolean values “True/False” represent magnetic
and nonmagnetic materials, respectively. The four algorithms accu-
rately classified Crl3 and CrGeTes; as magnetic materials*’. However,
the most accurate classification model remained the RFC algorithm.
Once again, our goal was to predict strongly magnetized ferromagnetic
materials. Therefore, at this stage, DFT calculations were not conducted
to determine whether the materials that have not been reported have
magnetism or not.
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Fig. 11 Workflow for hierarchical screening of 2D materials for classification of

magnetic-nonmagnetic, ferromagnetic (FM)/antiferromagnetic (AFM) classi-
fication, and prediction of net magnetic moment, followed by confirmation in
density functional theory (DFT). Achieving a two-dimensional material design
with strong magnetization ultimately.

In the second step, the FM/AFM classification of the selected
magnetic candidates was performed with the adoption of model-F-A
with four ML algorithms. The second step included two sub-steps:
high-throughput DFT calculation and FM/AFM classification. After
simple screening of the old C2DB database, 615 samples exhibit ther-
modynamic and dynamic stability, along with magnetic moments
> 1up. However, as mentioned previously, the 615 samples were all
labeled as FM. The calculation results in the C2DB database were based
on a unit cell, and most of them were obtained using Generalized
Gradient Approximation (GGA) and Heyd Scuseria Ernzerhof (HSE)
approximations. This resulted in the fact that all materials being
incorrectly calculated as ferromagnetic, whereas the antiferromagnetic
materials were completely ignored. In addition, for magnetic systems,
the GGA may underestimate the band gap and magnetic moment of 2D
strong-correlation materials*®. To obtain an accurately labeled dataset of
FM/AFM, the 615 2D candidates were re-calculated using the GGA+U
approach. The detailed Hubbard U values of the TM are presented in
Table S1, where only the one on element Tc is null. A 2 x 1 x 1 super-
cell was built for the unit cell, which included only one magnetic atom.
In our calculations, AFM represented the spin-antiparallel arrangement
of two magnetic atoms, and more complex magnetic structures were not
taken into consideration. Structural relaxation was performed on all
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materials, and the free energies of FM and AFM materials were
calculated. The energy differences between the FM and AFM are
presented in Table S4. The calculation results indicated that 357 ma-
terials are ferromagnetic, 223 antiferromagnetic, 26 exhibit ferromag-
netic energy equal to the antiferromagnetic energy, and nine materials
are quinary compounds that were discarded in our ML model. 26 ma-
terials with equal ferromagnetic and antiferromagnetic energies were
divided into antiferromagnetic sets. Therefore, the ratio of the number
of samples in the FM and AFM sets was 1.43 : 1. The 2DFM materials
were further classified into diverse prototypes according to their struc-
tural symmetries and space groups. Among the 357 2DFM materials,
the 10 most common ones, representing all 300 structures, are shown in
Fig. 3. The most common space group was that of P-3ml, which
corresponded to 77 similar structures including many MXenes and TM
dichalcogenides. It is found that most 2DFM materials have not been
reported, and their structural prototypes are novel and compelling‘”.
Moreover, it is emphasized that the Hf,Brg with P-62m space group and
the Os,Clg with P6/mmm space group both have a TM in the sixth
period; they have not been reported before and are rare in
2D ferromagnetism.

After high-throughput DFT calculations, the 606 samples obtained
were used to train the FM and AFM classification model F-A. Since
these dataset were small and the performance of the generalization
ability of training sets on test sets may be affected by a particular
random training-test set split, the train and test set were randomly split at
an ratio of 8:2. Hyperparameter optimization for the models involved a
10-fold cross-validation technique. The main metrics for the FM/AFM
classification of the test set are presented in Table 2. The KNN and RFC
classifiers performed significantly better than the SVC and Gaussian
Naive Bayes (GNB) classifiers. To increase the classification accuracy
of the Naive Bayesian algorithm, the Bernoulli Naive Bayesian was
replaced with the Gaussian Naive Bayesian; however, the accuracy did
not increase. Again, the RFC classifier achieved an excellent test-set
accuracy of 0.918. For the magnetic/nonmagnetic classification
models, the four metrics were relatively average. However, for the FM/
AFM classifier, the precision was higher than the accuracy, and the
recall was lower than the precision for the KNN and RFC classifiers.
The ROC curves and typical confusion matrices for the four classifi-
cation tasks are shown in Fig. 4. The optimized hyperparameters for all
the models are presented in Table S5. The classification AUC value of
the RFC model for the FM/AFM classifications exceeded 95% after re-
examination of distinguishable samples. The confusion matrix for each
classifier presents the counts of the classes predicted using the four
algorithms versus the true classes of the test set. Excellent performance
was achieved, especially for RFC classification, with an AUC value
of 0.97.

In orderto verify the generalization ability of model F-A and quickly
predict new ferromagnetic materials, 542 samples were selected and
labeled as magnetic in the updated C2DB database and they were
screened to obtain 463 2D materials with a magnetic moment of > 1ug.
Compared with the previous dataset of 615 samples, duplicate com-
pounds and quinary compounds were removed, resulting in 167 can-
didates. This small dataset were used as a validation set and imported
into the RFC model F-A for classification. It is predicted that 60 of these
compounds are ferromagnetic, as shown in Table S6.

Feature selection is critical for ML models. Fig. 5 shows the sorting
results for the material features of the RFC model. As indicated by Fig.
5a, the following were among the top 10 features in the dataset exam-
ined: (i) the electronegativity, covalent radius, Mendeleev number, and

melting (“mode electronegativity”, “mean electronegativity”, “Covalent
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Table 1 | Test-set performance metrics of machine learning models for
classification of materials as magnetic/nonmagnetic.

Model Accuracy Precision Recall F1

BNB 0.758 0.745 0.728 0.737
KNN 0.780 0.770 0.752 0.760
SVC 0.851 0.832 0.852 0.842
RFC 0.877 0.867 0.870 0.869

BNB: Bernoulli Naive Bayes; KNN: K-Nearest Neighbor; SVC: Support Vector Machine
Classifier; RFC: Random Forest Classifier.

radius”, “Minimum MendeleevN”, “Range MeltingT”, and “Maximum
MeltingT”), which are correlated to the elemental properties; (ii) the
number of the space group (SGnumber), which is linked to the structural
symmetry; and (iii) GSvolume_pa, NpUnfilled, and NUnfilled, which
affect the contributions of different elements in the materials to the top
of the valence band, thus affecting the electronic band structure and
magnetic properties of the compounds. As shown in Fig. 5a, a magnetic/

nonmagnetic classification model (model-M-N) with high generaliza-
tion ability and scores can be obtained with the adoption of only element
and component features, even without considering structural features as
descriptors . However, after testing, the same set of features was used to
train the AFM/FM classification models, which resulted in extremely
low scores for each metric. This is originated from the fact that the
feature vector of a single TM element cannot determine the magnetic
order of the system, and both ferromagnetic and antiferromagnetic in-
teractions are associated with the exchange interactions of the adjacent
magnetic atoms. The types of TM ions, the corresponding ligand atoms,
and their ionic radii lead to the formation of different types of crystal
fields in the compounds. As reported by Wang et al. the crystal fields are
an important feature used to describe magnetic ordering% particularly
the ability to classify FM and AFM materials. Therefore, during the
training of model F-A, the properties of the ligand atoms were intro-
duced as feature vectors. We also introduced structural features as well
as 20 atom centered symmetry function (ACSF) features associated
with structures. Fig. 5b shows the sorting results for the material fea-
tures of the RFC model F-A. All the elemental features and their

a ROC Curve for BernoulliNB b ROC Curve for KNN c ROC Curve for SVC d ROC Curve for RFC
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Fig. 2 | Test performance of a machine learning classification model for magnetic-nonmagnetic with four classified algorithms. a, BernoulliNB, b, K-Nearest
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Table 2 | Test-set performance metrics of machine learning models for
classification of materials as ferromagnetic/antiferromagnetic.

Model Accuracy Precision Recall F1

GNB 0.779 0.759 0.917 0.830
SvC 0.869 0.938 0.833 0.882
KNN 0.902 0.929 0.903 0.916
RFC 0.918 0.943 0.917 0.930

KNN: K-Nearest Neighbor; SVC: Support Vector Machine Classifier; RFC: Random Forest
Classifier.

descriptions (spin magnetic moments, ionic radius, covalent radius,
dipole polarization, formation heat, electronegativity, and vdw radius)
were obtained from the Python Mendeleev package 0.1 1.0 A simple
summation process was performed on the elemental features of TM
atoms and their coordinate atoms, and the d orbital electron number of
the TM was added to the feature sets. As shown in Fig. 5b, the sum of
the ionic radii of the TM and coordination atoms and the ionic radii of
the coordinate atoms were the most important features. In contrast, the
ACSF did not have a significant impact on the nature of the
target materials.

According to our high-throughput calculations, most 2D magnetic
materials have not been reported, and a special one is Cr,NF,, which
has a negative energy difference between FM and AFM states, indi-
cating that the ferromagnetism is stable. However, according to our
recent work, Mo,NCl, is a zigzag-type AFM***_This is ascribed to the
fact that, in our high-throughput calculations, the FM and Néel AFM
orders were simply considered, whereas the ground-state magnetic
structure of this functionalized MXene material is a zigzag-type AFM
state. Therefore, three magnetic structures were selected, as shown in
Fig. S1, and it is found that Cr,NF; tends to be a potential antiferro-
magnetic/ferroelectric multiferroic material. To estimate the Neel tem-
perature (7n) of the ferrimagnetic Cr,NF,;, Monte Carlo (MC)
simulations based on the 2D Heisenberg Hamiltonian model were
performed. Details regarding the MC simulations are provided in the SI.
From the calculated curve of Cy, as shown in Fig. 6a, it is found that
Cr,NF, had a fairly high 7 of 169 K. The non-zero magnetic moment
at 0 K reflects the antiferromagnetic behavior of the ground state, as
shown in Fig. 6b. Cr,NF; has a higher magnetic transition temperature
than Crl3 (T¢ = 45 K) and Cr,Ge,Teg (T¢ = 30 K)5 031 suggesting its
potential applications in nano-spintronic devices. In addition, the
ferroelectric polarization switching process was also simulated with the
adoption of the nudged elastic band (NEB) approach, as shown in Fig.

a ROC Curve for GaussianNB ROC Curve for SVC ¢ ROC Curve for KNN d ROC Curve for RFC
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Fig. 4 | Test performance of the machine learning classification model for ferromagnetic/antiferromagnetic (FM/AFM) with four classified algorithms. a,
GaussianNB, b, Support Vector Machine Classifier (SVC), ¢, K-Nearest Neighbor (KNN), and d, Random Forest Classifier (RFC). Insert: typical confusion matrices for

the ferromagnetic/antiferromagnetic (FM/AFM) binary classification tasks.
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6¢. As the paraelectric state is dynamically unstable, the energy profile
is a double-well curve. Two degenerate polarized states pass through a
saddle point (0.276 eV).

Regression model of net magnetic moments Most reports on
magnetic moment prediction lay great emphasis on the atomic magnetic

moment of each TM”?, or the magnetic moment per atom™. So itis hard
to believe that it fully reflects the total magnetization of the system.
According to model F-A and the high-throughput DFT results, there
were 383 candidates, including 357 ferromagnetic and 26 energy-
degenerate FM/AFM states, which were used to train the regression
model of the net magnetic moments of the unit cell. A material infor-
mation platform (Matminer) was used to describe elemental features of
the materials in the dataset™®. Elemental properties mainly include
elemental information, the electronic configuration, and the material
composition. In addition, we added 20 sine Coulomb matrix eigen-
values and 116 SOAP features associated with the structure. Thus, 273
features were included in the dataset. The input of high-dimensional
features not only leads to the risk of overfitting but also models in-
efficiency. The most important features were evaluated and retained
using 10-fold cross-validation recursive feature elimination (RFECV).
Through this procedure, 24 features were obtained, which were used for
the subsequent model training and testing. In Table S8, 24 selected
significant features are shown, and the physical explanation of each
feature is presented in Table S8. In addition, the number of unpaired
d orbital electrons of the TM elements (N-e-unpaired) and the magnetic
moment of a single TM atom calculated using DFT (M-single atom)
were important features for training the regression model. Unlike
classification models, during the training of regression models, three
ensemble algorithms were selected, Random Forest Regression (RFR),
Gradient Boosting Decision Tree (GBDT), eXtreme Gradient Boosting
(XGboost), and an Artificial Neural Network (ANN) algorithmss. The
selected hyperparameters for the four models are presented in Table S7.

Fig. 7 shows the results of the training and testing of the net mag-
netic moment of the unit cell for the four regression models. As indi-
cated by Fig. 7a to d, the training scores of all four models were high,
indicating that the 25 features (24 optimized features and N-e-unpaired)
are closely related to the net magnetic moment. The R? scores of the
three ensemble and ANN models were all > 0.9, and the GBDT model
exhibited the best performance, with R? = 0.945. 1t also exhibited the
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Fig. 7 | The training results of a, Random Forest Regression (RFR), b, Artificial Neural Network (ANN), ¢, eXtreme Gradient Boosting (XGboost), and d, Gradient
Boosting Decision Tree (GBDT) models, and the testing results of e, Random Forest Regression (RFR), f, Artificial Neural Network (ANN), g, eXtreme Gradient Boosting
(XGboost), and h, Gradient Boosting Decision Tree (GBDT) models. The gray dashed line in each figure represents the ideal curve y = x. The color bar represents the
absolute error. The red rectangular box represents the anomalous point, which is FesSg.
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smallest Root Mean Squared Error (RMSE) and Mean Absolute Error
(MAE) of 0.649ugp and 0.430ug, respectively. The test results indicated
that all the four models exhibit excellent generalization abilities, as
shown in Fig. 7e to h. Among the four ML regression models, the
highest performance was achieved by the GBDT model with the
smallest MAE of 0.556ug, exhibiting superior prediction accuracy. The
regression models trained using 25 features (24 optimized features and
M-single atoms) are shown in Fig. S2. The training accuracy of the
model containing N-e-unpaired features was similar to that of the model
containing M-single-atom features. However, expensive and accurate
DFT calculations are required by the M-single-atom features. Therefore,
in our subsequent prediction of 2D materials with strong magnetization,
the ML model used was a regression model with N-e-unpaired features.

Shapley Additive exPlanations (SHAP) value analysis is an
approach for evaluating ML model interpretability. It can provide a
clear graph of how diverse features compete with each other and

a b

determine the target propertyS(’. Specifically, it can reveal the quanti-
tative local contribution of each feature to the prediction target property
of a single sample, which is difficult to explain by feature importance.
Therefore, SHAP value analysis was implemented on the optimized
dataset of the magnetic moment regression model. The SHAP values of
the 25 most important elemental and magnetic features of the magnetic
moment regression model are shown in Fig. 8. The exchange interaction
between the nearest-neighbor (nn) and next-nearest-neighbor (nnn)
atoms in 2D monolayer materials has a more significant effect on the
magnetic moment than the elemental or atomic propeﬂies57. Taking
Cr,C as an example, the crystal field affects the electronic structure,
which in turn affects the magnetic interaction of magnetic systems, as
shown in Fig. 8a. The sine Coulomb matrix, volume per atom (VPA), is
related to the structural properties, which are also vital for the prediction
of net magnetization, as shown in Fig. 8b. The local influence of the
optimal representation set was also analyzed. Cr,C, Cr,CO,, and
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Fig. 8 | a, Monolayer structure of Cr,C; b, the heatmap matrix of the Shapley Additive exPlanations (SHAP) value magnitude of optimized structural and magnetic
features; ¢, SHAP analysis of Cr,C, Cr,CO,, and Cr3;C,0,. The positive (red) and negative (blue) SHAP values represent the contribution of a single sample to the net
magnetic moments. The expected base value of magnetic moments is 5.251ug and the machine learning predicted value is highlighted in black.
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Cr3C,0, were selected as representative materials, and their SHAP
values for the preferred features are shown in Fig. 8c. The net magnetic
moment is 6.92ug, 6.42ug, and 5.49ug per supercell for Cr,C, Cr,CO3,
and Cr3C,0,, respectively. Among the preferred features for enhancing
the net magnetic moment, the N-e-unpaired is the most positive
contribution. Conversely, the “sine Coulomb matrix eig 3”, and mean
number of unfilled electrons are the features with the most negative
contributions. The N-e-unpaired of pristine and O, functionalized Cr,C
are similar in contribution. The contribution of N-e-unpaired increases
from two to three layers of TM (Cr,C to Cr3C,). Additionally, the
proportion of VPA in CryCO; is relatively high, and the maximum
covalent radii of Cr,CO; and Cr3C,0, gradually increase. This leads to
a shorter distance between the two nn Cr’* ions. Thus, the Cr—C—Cr
FM super-exchange interaction in monolayer MXenes tends to be
stronger. Owing to the complexity of 2D structures and the various
factors affecting their magnetism, the SHAP value provides only limited
information on the physical mechanism. Nevertheless, the SHAP value
analysis makes our ML model for predicting 2D materials with strong
magnetization more interpretable. Significantly, the SHAP method was
employed for a quantitative analysis of the impact of ML-selected
features on magnetic properties, thereby revealing the underlying
physical insights of our models. This interpretable framework has the
potential to unlock the “black box” of ML, which could lead to
groundbreaking ML-aided material design advancements.

Design of novel 2D magnetic materials with strong magnet-
ization The aim of this section is to design 2D materials with large net
magnetic moments for the aforementioned reasons. 60 novel 2DFM
materials were predicted with the adoption of the ML classification model
F-A, as shown in Table S6. We input these 60 2DFM materials into
model-R for regression prediction of the magnetic moment. After the
regression calculations, screening was performed to obtain 13 2DFM
materials with magnetic moments > 7ug, as shown in Table 3. Thus,
starting from an initial dataset of 60 ferromagnetic candidates, a small
dataset of 13 samples was obtained, which was calculated to be stable and
exhibit net magnetic moments of > 7ug. It is emphasized that the goal
was achieved without high-throughput DFT calculations. Here, the
anomalous point appearing in the regression model was re-examined, i.e.,
the magnetic moment prediction of Fe4Sg, as shown in Fig. 9a.

An anomalous point also occurs in the regression model with a
feature containing the magnetic moment of a single atom (M-single
atom) such as the yellow dot in the rectangular box in Fig. S3. In the
C2DB database, Fe4Sg is labeled as an FM state with a net magnetic

Table 3 | The 13 two-dimensional materials with a magnetic moment greater
than 7y are predicted by model-R.

Formula Magnetic moment (yg)
MH3S4 7.661
MH3S€4 7.737
GaMnBr5Cl 7.813
MIlzNSz 7.371
I]’lenS4 7.677
Ml’lzClee 7.447
Fe;GeSe, 7.308
MH4N382 12.431
Mn21252 7.603
Mn,I,Se 7.599
AlenTe4 7.809
0Os,Clg 8.435
Mn2T64 7.482
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Fig. 9 | The top and side view of structure of 2D ferromagnetic materials
generative by ML regression, a, Fe;Sg, b, Os,Clg, ¢, Fe;GeSe,, d, MnyN3S,.

moment of 3.759up, which is clearly the magnetic moment of a single
Fe atom. This is consistent with the GGA+U calculations. The unit cell
used in the DFT calculations contained four Fe atoms, the calculated net
magnetic moment was 15.253ug, with an average magnetic moment of
3.813up for each Fe atom. However, the crystal symmetry of FesSg is
relatively low, and the crystal field is not a conventional octahedral,
tetrahedral, or triangular prism. From a purely structural perspective, the
nearest-neighbor Fe-Fe interaction is a direct exchange interaction.
According to the interpretability analysis of the regression model, a
shorter nearest neighbor direct exchange tends to exert a more signifi-
cant impact on the net magnetic moment, resulting in a smaller net
magnetic moment per unit cell. This is why anomalous prediction points
appear in the ML regression models. In addition, the dynamic stability
of Fe,Sg is relatively low, and further experimental confirmation of its
magnetic properties is required.

In the predicted set, most of the 2D materials with large net
magnetic moments contained Mn atoms. Os;Clg and Fe;GeSe, are
exceptions; their structures are shown in Fig. 9b and c, respectively.
Os,Clg was classified as a magnetic state with a magnetic moment of
7.668up in the C2DB dataset, which was smaller than the predicted
value of 8.435up. Os,Clg exhibits high thermodynamic and dynamic
stability, which was also reported for the C2DB dataset. In addition,
there are no relevant reports on Os;Clg. Fe3GeSe, has the same
structural prototype as Fe3GeTe,, which was reported to be a ferro-
magnetic monolayer by Li et al’®. The net magnetic moment of
Fe;GeSe, is 6.4297ug, which is smaller than the predicted value of
7.3087ug. It is also found that the S-functionalized Mn-based MXene
MnyN3S; has the largest net magnetic moment 12.431up among the
sub-dataset, which is larger than that of C2DB (10.776ug). Both
Fe3GeTe, and Mny4N3S; exhibit high thermodynamic and dynamic
stabilities. In order to verify the accuracy of the regression model, the
magnetic and electronic properties of the three compounds were
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Fig. 10 | The projected density of states (PDOS) for: a, Os,Clg, b, Fe;GeSe,, ¢, MnyN3S,, monolayer. Inset: spin density.

calculated with the adoption of DFT. As shown in Fig. 10, the
projected density of states (DOS) and spin density of Os;Clg,
FesGeSe,, and MngN3S; were obtained by the GGA+U approach. The
band gap of Os,Clg is 1.54 eV, which is larger than that of C2DB
(0.21 eV). The net magnetic moment of the Os;Clg unit cell is
8.075up. The predicted magnetic moment (8.435up) is closer to the
calculated value based on DFT than the value in the C2DB database.
The magnetic moment is mainly originated from Os ions, and a small
portion originates from Cl ions. For Fe;GeSe; and Mn4N3S,, the DOS
indicates metallic characteristic; the calculated magnetic moments are
7.933ug and 12.844up, respectively, which agree well with the
predicted ones, where the magnetic moment mainly originates from the
unpaired electrons in the 3D orbitals of TMs Fe and Mn.

The high-throughput DFT calculations for the 615 candidates took
approximately 57,600 core-hours on an high-throughput calculations
(HPC) cluster running on Intel Xeon Gold 5218 processors. The
training and screening of the ML classification and regression models
took approximately 560 core-hours on an Intel (R) Xeon (R) Platinum
8259CL. The computational time was reduced by more than one order
of magnitude during this process; thus, ML is used to accelerate the
discovery of new 2DFM materials.

CONCLUSIONS

In this work, based on the two-dimensional material databases of C2DB
and 2DMP, ML models have been established for magnetic/non-
magnetic and AFM/FM classification. Combining with high-
throughput DFT calculations, a regression model was trained for the
net magnetic moment of 2D materials. The GBDT regression model
shows the best performance with R? = 0.945, RMSE = 0.649, and
MAE = 0.430ug, respectively. Through the analysis of SHAP values, it
has been discovered that the interactions between nearest-neighbor and
next-nearest-neighbor atoms play a significant role in determining the
magnetic properties of 2DFM. If the interactions between nearest-
neighbor and next-nearest-neighbor atoms are stronger, it implies that
the magnetic coupling effect between the atoms is more pronounced,
leading to mutual enhancement of magnetic moments. It was unex-
pectedly found that CroNF; is a potential AFM/ferroelectric 2D multi-
ferroic material. More importantly, sixty novel 2D ferromagnetic
candidates are predicted, among them, 13 candidates exhibit magnetic
moments greater than 7up. OsyClg, Fe3GeSe,;, and MnyN3S, are
predicted to be novel 2DFM semiconductors, half-metals, and non-
metals, respectively. Our ML approach can accelerate the prediction of
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2D ferromagnetic materials with strong magnetization and save more
than an order of magnitude in computing time.

DATASETS AND METHODS

Datasets C2DB and 2DMP were adopted as the primary sources of the
dataset. It should be noted that C2DB includes 4035 entries up to 2021;
however, up to 2023.03, the C2DB includes 15,733 entries. The 2DMP
dataset contains a total of 6351 data points. According to the C2DB
report, there were 1617 2D materials with thermodynamic and dynamic
stability in 4035 samples. Among the 1617 candidates, 1292 were non-
magnetic, and 325 magnetic. To avoid an imbalance between the mag-
netic and nonmagnetic datasets, 800 magnetic 2D materials were
randomly selected with thermodynamic and dynamic stability in the
2DMP dataset. Thus, a dataset of 2417 samples was constructed, of
which 1292 were nonmagnetic and 1125 magnetic. This dataset was
labeled as data-N-M and used to train the magnetic/nonmagnetic clas-
sification model. It is also found that 615 magnetic samples are with
magnetic moments > 1ug in C2DB with 4035 entries. However, they did
not include antiferromagnetic 2D samples. Even a large database of
15,733 2D materials contained only 17 samples marked as AFM. In this
context, high-throughput DFT calculations for 615 FM samples were
performed with the adoption of the workflow. The retrieved datasets were
used to train the FM and AFM classification models. This dataset is
labeled as data-F-A. An accurate FM dataset with 383 samples calculated
using DFT+U was used to train the regression model of the magnetic
moment, and the FM dataset was defined as data-R. Compared with
previous studies, the datasets used contained a more extensive and pre-
cise variety of 2DFM materials.

Feature engineering The properties of a functional material can be
determined either from experimental measurements or through
simulations via calculations with the adoption of an ab initio approach.
ML eliminates the need for expensive programs by predicting the target
properties of novel 2D materials using suitable feature descriptors based
on prior data. The selection of a suitable set of feature descriptors that
determine the target property is of vital importance in all ML compu-
tations. Since all the properties of a material are ultimately functions of
its structure, composition, and elemental properties, we adopt feature
descriptors that encode this information”!. For the magnetic-
nonmagnetic classification model, the feature set includes descriptors
of two types: the first one is the Materials Agnostic Platform for
Informatics and Exploration (MAGPIE)*?, which was proposed by
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Ward et al. and used to obtain the elemental property labeled as EP. The
second feature is the composition, which includes the number of space
groups. For the FM/AFM classification model, the feature-descriptor
space was expanded by including the number of d orbital electrons
on the TM atoms (ny) which are strongly correlated for magnetization,
and the atom-centered symmetry function (ACSF), which depends on
the local coordination environment around a specific atom’”. In addi-
tion, the ionic radius, electronegativity, and dipole polarization of the
TM and nearest-neighbor coordination atoms were taken from the
Python Mendeleev package34, which are largely responsible for FM/
AFM classification. For the regression model of magnetization, we
added Smooth Overlap of Atomic Positions (SOAP) features and sine
Coulomb matrix features associated with the structure, which were
labeled as STRUCT®. The unpaired d orbital electrons of TM was
considered as an important feature descriptor.

High-throughput density functional theory calculation Our high-
throughput first-principles calculations for data F-A were performed
in the framework of DFT as implemented in the Vienna ab-initio
simulation package code’®?. The generalized gradient approximation
(GGA)3 8 with DFT-D3 was used to describe the exchange correlation,
which was a semiempirical dispersion—correction method to correct the
van der Waals (vdw) interactions’”. GGA+U correction was applied to
strongly correlate the TM d orbitals™’. The U value was determined
through linear response theory which ensures the reliability of the
qualitatively calculated results in the current work. The corresponding
U values of each TM are presented in Table SI. The plane-wave energy
cutoff was set to 500 eV. The Brillouin zone integration was sampled
with a Monkhorst—Pack?' mesh of 8 x 8 x 1. All the structure pa-
rameters were sequentially relaxed so that the Hellmann—Feynman
forces were < 0.01 eV/A, and the total energy changes converged to
<107 eV. The conjugate gradient algon'thm42 was used to optimize the
structure. A vacuum distance of > 15 A was set between adjacent slabs
to eliminate spurious interactions. Structure and spin density visuali-
zation and analysis were performed adopting the VESTA code™’.
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