Chinese Journal of Structural Chemistry 42 (2023) 100120

Contents lists available at ScienceDirect

Chinese Journal of Structural Chemistry

b
ELSEVIER journal homepage: www.journals.elsevier.com/chinese-journal-of-structural-chemistry
Review
Application of topology-based structure features for machine learning in R

materials science

Shisheng Zheng “, Haowen Ding°, Shunning Li“, Dong Chen ®

Check for
updates

b Feng Pan®"

@ School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, PR China

Y Department of Mathematics, Michigan State University, East Lansing, MI, USA

ARTICLE INFO ABSTRACT

Keywords:
Machine learning
Structure feature
Structure graph
Algebraic topology

Structure features play an important role in machine learning models for the materials investigation. Here, two
topology-based features for the representation of material structure, specifically structure graph and algebraic
topology, are introduced. We present the fundamental mathematical concepts underlying these techniques and
how they encode material properties. Furthermore, we discuss the practical applications and enhancements of
these features made in specific material predicting tasks. This review may provide suggestions on the selection of

suitable structural features and inspire creativity in developing robust descriptors for diverse applications.

1. Introduction

In the field of materials science, a vast amount of experimental and
computational data on the properties and structures of different com-
pounds has been accumulated. With access to databases containing
millions of organic compounds [1,2] and over 200 thousands of inor-
ganic compounds [3], it is essential to explore how to effectively manage
and use these datasets to boost scientific breakthroughs. Machine
learning, as a typical approach to data-driven patterns [4,5], is an
important typology for accelerating statistical analysis of big data. It is a
powerful tool that can extract and generalize potential underlying pat-
terns from a large volume of existing data, and make predictions or
classifications of unseen data. It has been extensively applied in various
subdivisions of materials science (e.g., batteries [6,7], catalysts [8-12]
and ferromagnetic materials [13,14]), enabling high-throughput
screening of novel materials and predicting material properties.

The process of machine learning generally includes data collection
and preprocessing, feature engineering, model selection and training,
model evaluation and verification and model deployment and applica-
tion [15]. Feature engineering involves the representation of material
structures as descriptors for machine recognition. The appropriate rep-
resentation of material structures through their relevant features is the
key to enabling reliable predictions of material properties using machine
learning [4]. These features serve as the building blocks that form the
foundation of the model's ability to learn and identify patterns in the
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data, and can also highlight anomalies and unusual structures that may
be of interest for further investigation [16]. Among the various structural
features utilized in materials science, topology-based descriptors have
unique advantages. Such representations are often characterized by their
intuitive and concise nature, as well as their ability to effectively utilize
mathematical operations to comprehend the complex structural features
of materials. In this mini review, we introduce two structural features
derived from topology-based mathematical sub-disciplines, namely
structure graph and algebraic topology and demonstrate their utility in
the realm of materials science.

2. Structure graph

Graph theory is a mathematical discipline in which graphs are the
object of study. A graph, which exactly is the simplicial 1-complexes in
topology, is an aggregate consisting of a set of vertices and a set of edges
that represent connected relationships between the vertices. It is typically
employed to represent relationships between objects, with vertices rep-
resenting objects and edges connecting pairs of vertices that exhibit a
particular relationship [17-19]. Material structures, consisting of atoms
and chemical bonds, can be intuitively represented as structure graph
[20-23]. In a structural graph, nodes represent atoms and edges are
chemical bonds between atoms [24,25]. The constructed structure
graphs contain only the topological information while neglecting the
symmetry, bond lengths, and bond angles of the structures. The

Received 17 April 2023; Received in revised form 2 June 2023; Accepted 5 June 2023

Available online 7 June 2023

0254-5861/© 2023 Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.


mailto:chend@pku.edu.cn
mailto:panfeng@pkusz.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cjsc.2023.100120&domain=pdf
www.sciencedirect.com/science/journal/02545861
www.journals.elsevier.com/chinese-journal-of-structural-chemistry
https://doi.org/10.1016/j.cjsc.2023.100120
https://doi.org/10.1016/j.cjsc.2023.100120

S. Zheng et al.

topological information itself can be applied to the classification and
identification of materials [26]. The structure graph is directly related to
an atomic adjacency matrix, where a;; = 1 if atoms i and j are connected
and a;; = 0 if not, and thus is easily for machine recognition.

One can directly derive topological information from such structure
graphs using graph theoretical quantifiers which can produce useful
functions that correlate with properties of materials through the graph
invariants or more frequently structural descriptors. Topological indices
are one such structural descriptors which provide numeric functions of a
molecular structure to facilitate quantitative structure-property/activity
relationship (QSPR/QSAR) [27]. A large spectra of topological indices
are available, among which the commonly utilized in QSPR/QSAR
studies for grasping the relationships between the structure and the po-
tential physicochemical characteristics are distance based, bond additive
and degree based indices. Taking the field of zeolite research as an
example, Clement et al. [28] have developed efficient technique to obtain
exact analytical expressions for the various relativistic topological de-
scriptors of the zeolite RHO structures (Fig. la and b) by
graph-theoretical cut methods that reduce the complex structures with
tunnels and cages into simpler graphs. All the acquired topological de-
scriptors (Fig. 1c, d and e) are highly significant for the characterization
of the QSAR properties of zeolite frameworks. Moreover, the developed
topological indices that have the capability to include relativistic effects
would be especially useful in the characterization of morphological
changes to the materials that occur by the incorporation of heavier ele-
ments into the zeolite. They also developed topological indices to char-
acterize other zeolite structures and to analyze the entropy measures of
zeolite and benzenoid hydrocarbons [29-32].

When practically using structure graphs as features for machine
learning, the graph is usually decomposed into subgraphs centered on
different atoms to obtain the coordination environment of each atom [33,
34]. A simplified subgraph centered around an oxygen atom in spinel
Co304 is shown in Fig. 2a [34]. The selection criterion involves
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incorporating all the atoms that are located within a bond-path distance
of 4 from the central atom, resulting in a distinctive portrayal of the
atoms arrangement within the unit cell of the compound. The crystal
structure is represented by enumerating all the subgraphs of
non-equivalent atoms in the compound and merging them together. In
specific scenarios, the central node can also be a collection of several
atoms [35].

Incorporating chemical information into the structure graph is crucial
for enhancing the scientific validity and interpretability of the machine
learning model. Wang et al. (Fig. 2b) utilized a crystal graph multilayer
descriptor to represent the material structure for the prediction of ther-
modynamic stability, magnetic ground state, and band gap [14]. Spe-
cifically, in addition to the connectivity matrix, seven element feature
matrices were created for endowing the feature physical meaning. Ac-
cording to the different predictive properties, three feature matrices are
selected to construct the corresponding multilayer descriptor. The pro-
cess of feature engineering not only offers a pathway to obtain physical
and chemical insights into the relationship between descriptors and
properties but also allows for customization of descriptors for various
material properties, thereby establishing an adaptable machine learning
framework for future research.

In the above mentioned structure graphs, edges generally represent
chemical bonds between atoms. This can effectively capture the main
chemical interactions in the structure, but it will ignore the possible weak
interactions, such as van der Waals interactions, which are especially
important in molecular systems. Pan et al. reported the element-specific
multiscale weighted colored graph representations for the consideration
of weak interactions in molecular systems to predict molecular toxicity
[36]. For a molecule, it firstly determines the set of edges between
particular pairs of atoms to obtain the corresponding subgraphs and the
corresponding algebraic representation of each subgraph, such as the
associated Laplacian and adjacency matrices (Fig. 3c and d); the strength
of interatomic interactions is then evaluated by radial distribution
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Fig. 1. (a) Zeolite RHO structure. (b) Primitive unit cell of zeolite RHO and its single layer. (c)-(e) Comparison of TI values for RHO(a, b, ¢) (Reprinted with permission

from Ref. [28], Copyright 2022 Elsevier).
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Fig. 2. (a) The subgraphs of spinel Cos04 (Reprinted with permission from Ref. [34], Copyright 2019 Springer Nature). (b) Construction of element feature matrices
for 2D materials (Reprinted with permission from Ref. [14], Copyright 2021 Wiley).

functions to distinguish between covalent and non-covalent interactions,
and the corresponding function values are assigned to the Laplace and
adjacency matrices (Fig. 3e); by performing statistical operations on the
matrixes eigenvalues, a numerical representation of the molecules can be
obtained as an input for machine learning. This feature is independent of
molecular size, but can effectively represent the effect of weak in-
teractions on the system properties. Based on a similar idea, a multiscale
weighted spectral was developed to predict the structure of lithium
clusters [37].

Although the structure graph has made great progresses, there are still
problems to be solved, such as how to consider the bond angle, molecular
orientation and other information that characterizes the three-
dimensional structure in space, which may be important in some sub-
fields of materials science (e.g. heterocatalysis and pharmacy).

3. Algebraic topology

Algebraic topology is a branch of mathematics that uses tools from
abstract algebra to study topological spaces. Algebraic topology-based
structural features can offer a feasible approach to encode compound
structures using independent entities, rings, and topological faces of high

dimensions in space [38-40]. Persistent homology is a powerful tool in
algebraic topology to capture topological invariants in a changing scale,
while more geometric information is preserved. By treating the atoms in
a solid as a 3D point cloud in space, persistent homology can be used to
construct structural features. Specifically, a family of complexes with
different connectivity properties can be constructed by varying the
filtration parameters, so that each moment of the complex may have a
different topology. Thus, persistent homology can generate topological
fingerprints that describe the presence of connected components, rings
and voids in the structure during the change [41]. Connected compo-
nents encode bond lengths and pairwise interactions, while holes and
voids provide insights into many-body interactions and the spatial in-
formation. This approach offers a valuable perspective for materials
science and can be directly used to characterize the difference between
material structures [42-45].

Pan et al. developed a persistent-homology-based machine learning
algorithm to accelerate the search of the globally stable structure of
clusters [46] (Fig. 4a). They introduced the idea of persistent pairwise
independence, which involves counting the number of independent atom
pairs throughout the filtration process. The change in persistent pairwise
independence throughout filtration provides information about the
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Fig. 3. Illustration of weighted colored element-specific algebraic graphs. (a) The molecular structure of 2-trifluoroacetyl. (b) A traditional graph representation and
(c) a colored graph representation. (d) Illustration of the process of decomposing a colored graph into element-specific CC, FO, and CH subgroups, where element
refers to the chemical element in this study, e.g., H, C, N. (e) Illustration of weighted colored element-specific subgraph Gy, its adjacency matrix, and Laplacian
matrix, where ¥ refers to the weight of the edge in subgraph (Reprinted with permission from Ref. [36], Copyright 2022 Springer Nature).
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Fig. 4. (a) The flowchart for the construction of topological fingerprint of a Li cluster (Reprinted with permission from Ref. [46], Copyright 2020 American Chemical
Society). (b) The construction of element-specific topological descriptor for BaTiO3 (Reprinted with permission from Ref. [48], Copyright 2021 Springer Nature). (c)
The flowchart of our persistent homology-based machine learning models for the prediction of formation energy and bandgap of organic-inorganic halide perovskite

(Reprinted with permission from Ref. [49], Copyright 2021 Springer Nature).

interatomic distances between atom pairs. The resulting persistent
barcodes and pairwise independence measures are then merged and
transformed into 1D vectors that are invariant to translations and rota-
tions. These vectors can serve as structural features for machine learning
applications. To demonstrate the effectiveness of this approach, the re-
searchers used Li, (3<n<10) clusters as examples. The resulting de-
scriptors are able to capture the existence of small cages inside the
clusters and encode the corresponding geometric information. This suc-
cess indicates that persistent homology has the potential to extract
important topological information related to interstitial voids and
macroscopic pores in materials, which can improve the accuracy of
structure prediction in large clusters (Lizp and Ligp).

Despite the capability of persistent homology to capture both local
and global structural information at once, it is not a common practice to

include the element information in the structural features created using
this method. To overcome this challenge, one approach is to generate
persistent barcodes for different atom subsets in the compound, incor-
porate the element information, and finally merge all the element-
specific barcodes together [47].

An example that predicts the formation energy of crystalline com-
pounds has been demonstrated by Pan et al. [48] (Fig. 4b). To account for
periodicity in the construction of persistent barcodes for the central
atom, a cutoff radius is introduced to determine the range of constituent
atoms involved. The BaTiOs is taken as a case, where nine different
barcodes are generated by considering all possible combinations of atom
pairs from Ba, Ti, and O. The statistics information of these barcodes is
merged with the element information to create a statistical representa-
tion for BaTiOs. The element-specific persistent homology approach
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Fig. 5. Illustration of persistent path topology. (a) The weight function-based matrix is constructed from a molecular structure. (b) Illustration of the basic component
that makes up the path complex, p-path, where p = 0, 1, 2, and 3. (c) Illustration of the distance-based filtration. As the filtration parameter increases, the path
complex based on the weight matrix expands accordingly. In the left figure, the x- and y-axes represent the atomic index in the structure, respectively. The yellow
entries represent the formation of directed edges between the corresponding pairs of atoms. The right figure represents the corresponding path complexes. (d) The
persistent Betti numbers of the distance-based persistent path topology. Hy, H1, and Hz show the 0-, 1-, and 2-dimensional path homology, respectively. The vertical
axis represents the values of persistent Betti numbers, and the horizontal axis represents the filtration parameter in A. (e) Illustration of the angle-based filtration. All
possible directed edges are mapped to unit sphere. The path complex in the right figure expands with the increase of the directed edges covered by the growth of the
spherical surface. (f) The persistent Betti numbers of the angle-based persistent path topology. The vertical axis represents the values of persistent Betti numbers and
the horizontal axis represents the angle-based filtration parameter (Reprinted with permission from Ref. [53], Copyright 2023 American Chemical Society).
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ocyclohexane. (g) Shared digraph representation for trans and cis structures. (h) The DPPT analysis of trans-1,2- and cis-1,2-dichlorocyclohexane. Shared parts are
plotted in mesh. (i) The APPT analysis of trans-1,2- and cis-1,2-dichlorocyclohexane. Shared parts are depicted in mesh. (j) The structure of R-alanine. (k) The structure
of Salanine. (1) Shared digraph representation of R- and S-alanine. (m) The DPPT analysis of R- and S-alanine. Shared parts are plotted in mesh. (n) The APPT analysis
of R- and S-alanine. Shared parts are presented in mesh (Reprinted with permission from Ref. [53], Copyright 2023 American Chemical Society).
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preserves the physical and chemical information of the compound during
topological abstraction. However, it is worth noting that the derived
feature depends on the selected cutoff radius to handle periodicity, which
may lead to biases and affect the predictive ability of machine learning
models. Sum et al. [49] (Fig. 4c) extended the element-specific persistent
homology representation to the prediction of formation energy and
bandgap of organic-inorganic halide perovskite, which achieved signifi-
cant accuracy advantages over traditional descriptor based on machine
learning models.

Through the above operations, the information of the elements can be
considered. However, persistent-homology is insensitive to asymmetric
or directional relations in essence. For the material structure, the
chemical bonds are usually spatial directional and polar, which poten-
tially has impacts on the properties of the material. In mathematics, path
homology (PH) proposed by Grigor'yan et al. can be used for the directed
networks [50,51]. Persistent path topology (PPT) was introduced to
further empower path homology by multiscale filtration [52]. Pan et al.
introduced this method into the field of materials [53]. The point cloud
that labels different atom types by colors is taken as an example (Fig. 5a).
Unlike persistent homology, which considers all atoms equally, PPT fo-
cuses on paths that can be identified by bond polarity based on electro-
negativities of the atoms. The four simplest paths, i.e., 0-, 1-, 2-, and
3-path, are shown in Fig. 5b and serve as the fundamental elements for
constructing the p-path complex, which is a topological space that en-
compasses all possible paths in the system and characterized by the
longest path length p. Similar to the operation in persistent-homology,
distance can be used as a criterion to obtain topological invariants via
the filtration in PPT, namely distance-based persistent path topology
(DPPT) (Fig. 5c and d). The difference is that in PPT, the angle can also be
used as a filtering standard to characterize the structure of the material,
namely angle-based persistent path topology (APPT) (Fig. 5e and f). The
authors showcase the effectiveness of two PPT techniques in dis-
tinguishing and identifying isomers in molecular systems, including
D-fructose and D-glucose isomers, cis-trans isomers and chiral molecules
(Fig. 6). Additionally, PPT is applied to study and characterize the
Jahn-Teller effect and differentiate isomers of high entropy alloy cata-
lysts, highlighting its ability to reveal the underlying physical and
chemical properties induced by atomic ordering. Although this encoding
scheme was originally demonstrated by characterizing the difference of
material structure, its utilization in machine learning models is also
envisaged.

4. Summary and perspective

This review provides a brief overview of two topology-based struc-
tural features: structure graph and algebraic topology. They are capable
of abstracting material structures and extracting essential feature infor-
mation, such as chemical bond connectivity. As they can effectively
capture interactions among nearest neighbors, they are well-suited for
investigating chemical reactions. Additional factors such as element in-
formation, spatial information, and weak interactions can also be
incorporated into these features. While richer information will help
improve the interpretability and accuracy of the model, this will inevi-
tably incur a corresponding computational cost. Therefore, a balance
between the efficiency and interpretability of machine learning models
should be considered in practical application scenarios.
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