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ABSTRACT: Among all intercalation cathodes for Li-ion batteries, Li−Mn−O layered
oxides offer the highest initial energy density at the lowest cost, due to the joint
contribution from cationic and anionic redox chemistry. However, the poor cycling
capability, resulting from the continuous lattice O loss at high potentials (>4.5 V), hinders
practical applications. Herein, we employed phase complex engineering to obtain a new
Li−Mn−O nanohybrid cathode featuring the uniform and coherent integration of layered
nanodomains and spinel nanodomains. The combination of DFT calculations,
synchrotron-based transmission X-ray microscopy, in situ differential electrochemical
mass spectrometry, in situ synchrotron XRD, and electrochemical tests demonstrated that
the O migration path in layered nanodomains was blocked by the neighboring spinel
nanodomains with a higher oxygen vacancy migration energy, thus effectively suppressing
the irreversible lattice O loss at high potentials and enhancing the cycling stability in both
capacity and average voltage. The strategy is experimentally demonstrated to be effective
and it leads to a new path for developing stable high-energy-density cathode materials.

The development of battery technology is largely driven
by the discovery of new materials. For Li-ion batteries,
there have been always demands on the cathode to

continually improve the reversible capacity, rate capability, and
cycling stability.1−3 The capacities of current commercial
cathode materials, including LiFePO4,

4,5 LiMn2O4,
6,7

LiCoO2,
8,9 and LiNixCoyMn1−x−yO2/LiNixCoyAl1−x−yO2

(NCM/NCA, 0 < x, y < 1),10,11 are largely restricted by the
redox of transition-metal cations, and they are below 220 mA h
g−1 in practice, corresponding to an energy density of <800 W
h kg−1.12 An anionic redox reaction in Li-rich layered oxide
cathodes was discovered to be able to boost the practical
capacity to >250 mA h g−1 and the energy density to >1000 W
h kg−1.13−16 Previous studies revealed that oxygen redox
commonly occurs in both NCM and Li-rich cathodes when
they are charged over the critical voltage, which can be
attributed to the Li−O−Li or Li−O−vacancy configurations
(generated at a deep delithiation state in NCM).17−20 Li-rich
layered oxides are typically composed of two layered phases,
Li2MnO3 and LiTMO2 (TM = Ni, Co, Mn). Li2MnO3 with a
monoclinic symmetry (space group C2/m) shows a high
theoretical capacity (up to 459 mA h g−1) but a very poor
practical capacity of <200 mA h g−1 due to the irreversible O
loss.21−23 LiTMO2 with a rhombohedral symmetry (space

group R3̅m) exhibits a relatively low theoretical capacity (<200
mA h g−1) with TM redox while having a relatively stable
structure. The structural integration of these two phases
combines TM redox and O redox together and delivers a high
reversible capacity of >250 mA h g−1.24,25 This phase complex
engineering strategy has proved to be effective in stabilizing O-
redox-related intercalation cathodes, although Li-rich layered
oxides still suffer from issues such as capacity/voltage
fading.26−29

Following the phase complex engineering strategy, here we
design a layered-spinel nanohybrid architecture for a Li−Mn−
O cathode (denoted LS-LMO) based on an in-depth
understanding of the intercalation structures and DFT
calculations. As shown in Figure 1a, layered-phase Li2MnO3
(represented by blue squares) and spinel phase LiMn2O4
(represented by pink squares) possess the same hexagonal-
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close-packed anionic oxygen framework, which ensures the
structural compatibility. Most importantly, they are comple-
mentary in electrochemical performance at high potentials
(>4.5 V). The layered phase Li2MnO3 is unstable due to the
irreversible O redox and continuous O loss,30 while the spinel
phase LiMn2O4 is stable since no O redox is involved at high
potentials (even up to 4.8 V). In the delithiated layered phases
(Li2MnO3 and MnO3), oxygen vacancies (VO) are facile and
even spontaneous to form due to the small and negative values
of the VO formation energy (0.10 and −0.79 eV for LiMnO3
and MnO3, respectively; Figure 1c) and also easily migrate due
to the small VO migration energy (0.36 eV for LiMnO3; Figure
1d). When they are surrounded by the delithiated spinel phase
Mn2O4 (Figure 1b), the vacancies in the layered phase have
difficulty in migrating due to the higher VO formation energy
(2.90 eV for Mn2O4; Figure 1c and Figure S1) and higher VO
migration energy (2.07 eV for Mn2O4; Figure 1d), which
would improve the structural stability of the Li2MnO3 layered
phase at high potentials to a great extent. Besides, the layered
phase mainly undergoes a volumetric expansion during a
charge, while the spinel phase mainly undergoes a volumetric
contraction during a charge.7,31 Such complementary behaviors
benefit reducing the volumetric and strain changes during
charge/discharge, which have recently been identified as the
origin of the structural degradation in Li-rich layered
cathodes.32 In brief, such a design of a layered-spinel
nanohybrid architecture is expected to solve the fundamental
concern of the irreversible O redox and deliver enhanced
performance. Though there have been some reports on
layered/spinel heterostructures,23−36 most of these materials
were designed in the form of a core−shell architecture with a
spinel shell on the layered core. The nonuniform coating and
the spallation of the spinel shell during repeated cycles still
jeopardize the cycling stability.37,38

Herein, the layered-spinel biphasic complex Li−Mn−O
cathode was successfully prepared by the ion-exchange
method. Since the spinel structure is integrated into the
layered structure coherently at the nanoscale and effectively

blocks the O migration route, it exhibits ultrahigh reversible
capacities (>440 mA h g−1) with decent cycling stability in a
wide voltage region. Our work opens a new path for
developing high-performance cathodes through a nano phase
complex strategy.
LS-LMO exhibits a morphology of spherical-like secondary

particles with a size of about 1 μm, composed of primary
nanoparticles with a size of 50−100 nm (Figure S2a). The
molecular formula was determined to be Li1.13Mn0.75O2 by
ICP-OES (Table S1). The average structure was characterized
by combining X-ray (XRD) and neutron diffraction (ND) data
(Figure 2a). A Rietveld refinement was performed using two
phases, a layered model (space group C2/m) and a spinel
model (space group Fd3̅m). The weight ratio of layered and
spinel phases in LS-LMO was determined to be 0.83:0.17,
confirming the coexistence of both phases. The detailed
structural parameters are given in Tables S2−S4. Different
from the stoichiometric Li2MnO3 and LiMn2O4, the layered-
phase component shows serious Li/Mn mixing in the Mn
layers (Table S3), and the spinel phase component presents a
small amount of of Li/Mn mixing at Li (8a) and Mn (16d)
sites (Table S4), which manifest the complex effect of two
phases at the atomic level.
The local structure was investigated by high-resolution

transmission electron microscopy (HRTEM). As shown in
Figure S2b, two regions were selected in HRTEM images to
perform fast Fourier transform (FFT). The FFT patterns from
the blue regions represent a typical layered structure like that
of Li2MnO3 (Figure S3a),39,40 However, the FFT patterns
from the pink regions represent a spinel-like structure like that
of LiMn2O4 (Figure S3b), indicating the layered-spinel
hybridization within the individual primary particle for LS-
LMO, which is further confirmed by the HAADF-STEM image
(Figure S4). The HRTEM images in Figure 2b,c show that the
layered structure along the [100] direction (marked by a blue
shadow) is hybridized with the spinel-like structure along the
[211] direction (marked by a pink shadow), with a form of
intralayer coherence at the nanoscale, consistent with the

Figure 1. Structure design of biphasic phase complex cathodes. (a) Schematic illustration of the layered-spinel nanohybrid architecture. The
layered and spinel phases are represented by the blue and pink squares, respectively. (b) Formation and migration of an oxygen vacancy
(VO) in the layered-spinel nanohybrid at high potentials (>4.5 V). VO formation energies (c) and migration energies (d) for layered
Li2MnO3, half-delithiated Li2MnO3 (LiMnO3), fully delithiated Li2MnO3 (MnO3), spinel LiMn2O4, and fully delithiated LiMn2O4 (Mn2O4).
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structure design in Figure 1a. Besides, continuous bright spots
were observed in the layered regions, indicating serious Li/Mn
mixing in the Mn layers, consistent with the diffraction results
above.
The electrochemical performance of LS-LMO is shown in

Figure 3. First, we compare the charge−discharge profile of LS-
LMO with those of layered Li2MnO3 and spinel LiMn2O4 in
the voltage range of 1.3−4.9 V in Figure 3a. LS-LMO presents
a long plateau at around 4.6 V similar to that of Li2MnO3 (blue
dashed rectangle) during the first charge, coming from the
contribution of oxygen redox in the layered component.41

There are also two short plateaus at around 4.0 and 2.8 V like
those of LiMn2O4 (red dashed rectangles), coming from Mn
redox in the spinel component. We can deduce the ratio
between the layered and spinel phases to be 0.85:0.15
according to the respective capacity contribution during the
first charge, consistent with the diffraction refinement results
above. Surprisingly, due to the synergistic effect of two phases,
the initial discharge capacity is as high as 442 mA h g−1, close
to the theoretical capacity of Li2MnO3 (462 mA h g−1) and
equivalent to an ultrahigh energy density of 1270 W h kg−1

(calculated according to the weight of active material in the
cathode). The extra capacity at the low-voltage range (<2 V)
can be ascribed to the insertion of more Li+ into tetrahedral
sites in Li slabs with Mn reduction, consistent with previous
literature reports.42−44 The corresponding CV curves in Figure
S5 further confirm the two-phase synergistic effect on the
electrochemical behaviors. Besides, LS-LMO delivered a
discharge capacity of 388 mA h g−1 at 50 mA g−1 and of
118 mA h g−1 at 10 A g−1, exhibiting superior rate capability
(Figure S6). The cycling stability was compared at 500 mA g−1

(Figure 3b,c). LS-LMO retains a reversible capacity of 204 mA
h g−1 after 150 cycles, remarkably superior to Li2MnO3. Also,
the voltage decay in LS-LMO was only 0.065 V after 150

cycles, almost 1 order of magnitude smaller than that in Li-rich
Mn-based oxides.45

To determine the structure change of LS-LMO during
charge/discharge, in situ synchrotron XRD patterns were
collected during the first cycle of LS-LMO. As shown in Figure
3d, the overlapping layered-spinel peaks (001)L/(111)S, (20−
1)L/(311)S, and (201)L/(331)S did not split, and there was no
noticeable peak shift during charge/discharge, demonstrating
the excellent structure stability of the nanoscale phase
composite since the volumetric and strain changes in the
layered phase and spinel phase are complementary to a great
extent during charge/discharge.7,31 After discharging below 2.8
V, the peaks gradually attenuated and shifted slightly to the
high-d direction. The changes suggest a phase transition due to
the J-T distortion, although the J-T effect has been largely
inhibited.
In brief, through a layered-spinel phase complex at the

nanoscale, LS-LMO exhibited better cycling performance and
superior rate capability than the benchmark layered Li2MnO3
cathode, indicating the great success of such nanohybrid
structure in enhancing the electrochemistry.
Anionic redox is the core for implementing a high capacity

and also a critical factor affecting the cycling stability for Li−
Mn−O layered cathodes. To examine the influence of the
nanohybrid structure on the O redox reaction, transmission X-
ray microscopy (TXM) coupled with 3D X-ray absorption
near-edge spectra (XANES) were employed to study the LS-
LMO electrodes at different charge/discharge states. TXM

Figure 2. Examination of a layered-spinel biphasic nanoscale
complex structure. (a) X-ray and neutron diffraction patterns as
well as the combined Rietveld refinement for LS-LMO. Rwp =
6.58%. Atomic-resolved HRTEM image for LS-LMO (b) and the
corresponding phase structural diagram for the selected regions
(c). Scale bar: 1 nm.

Figure 3. Superior electrochemical performance. (a) The first
charge/discharge (1st-C/1st-D) and second charge (2nd-C)
profiles for LS-LMO, Li2MnO3, and LiMn2O4 in the range 1.3−
4.9 V at 10 mA g−1. The change of the discharge capacity (b) and
the average voltage (c) for LS-LMO and Li2MnO3 on cycling at
500 mA g−1. (d) Contour plot of in situ synchrotron XRD patterns
during the first cycle of LS-LMO at 80 mA g−1.
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offers a unique capability to investigate the spatial distribution
of the elemental valence state at a high resolution.46,47 Here we
probed the Mn oxidation/reduction in various states of
charge/discharge (Figure 4a,b and Figures S7 and S8). Figure
4a presents a 3D rendering of Mn valence distribution at OCV,
4.5, 4.9, 2, and 1.3 V of the first cycle, respectively. The color
changes from green to red then to green and eventually blue,
demonstrating the gradual oxidation process of Mn cations
from OCV to 4.5 V, then the partial reduction of Mn from 4.5
to 4.9 V, and further reduction of Mn during discharge. The
Mn reduction at high voltage may be related to the lattice
oxygen loss or the interplay between the overlapped Mn3+/
Mn4+ and O2−/O− states.48−50 A similar observation was
further confirmed by the 2D slice views in Figure 4b, and the
insets reflect the nonuniform distribution of Mn valence within
individual particles.
To quantify the changes in the valence state of Mn with

charge/discharge, we counted over all the voxels in the 3D
XANES and performed a fitting (Figure S7). The results were
marked in the charge/discharge curves (the upper panel of
Figure 4c). The small changes in Mn valence state during the
first charge and first discharge are −0.06 and −0.59,
respectively, which confirms the combined contribution of
Mn redox and O redox to the high reversible capacities (Figure
4d). Based on the quantitative contribution of Mn redox to the
capacities, we can deduce the contribution of O redox during
the first cycle, the second charge, and the tenth charge (Figure
4e). It is clear that the capacity contribution from O redox is
over 100% during the first charge due to the negative
contribution of Mn redox (the capacity contribution of Mn
reduction behavior during the charge process was defined as a

negative value). It decreases to 56% at the first discharge and
gradually increases to 68% until the tenth charge, hinting at the
great reversibility of O redox during the subsequent stable
cycling. The redox of Mn and O can be also confirmed by the
Mn L-edge and O K-edge soft X-ray absorption spectra (sXAS;
Figure S9).
In situ differential electrochemical mass spectrometry

(DEMS) was used to capture gas evolution during cycling.
As shown in Figure 5b, little CO2 and even less O2 release was
detected at high potentials during the first charge of LS-LMO,
while much more significant O2 and CO2 signals were noticed
in Li2MnO3 (Figure 5a). More importantly, there is no O2 and
CO2 detected during the second cycle in LS-LMO, in contrast
to the obvious gas release in Li2MnO3. These results indicate
that the lattice O release and carbonate-electrolyte decom-
position reactions were efficiently suppressed by the nano-
hybrid structure, which is responsible for the enhanced
reversibility of O redox and the excellent cycling stability.
The local structure changes were also examined. Figure 5c−

e exhibits the local structures of Li2MnO3 after the 1st, 10th,
and 50th cycle, respectively. The layered structure partially
transformed to the spinel phase even after the first cycle, as
demonstrated by the HRTEM image as well as the
corresponding FFT map in Figure 5c and then underwent
quick structure degradation with a serious loss of crystal-
lization, demonstrated by the diffraction rings in FFT maps in
Figure 5d,e. The increased full width at half-maximum (fwhm)
of the XRD peaks after the 50th cycle further confirm the
continuous structure degradation and crystallization loss of
Li2MnO3 (Figure S10). In addition, O vacancy clusters can be
observed in the lattice of Li2MnO3 after the 10th and 50th

Figure 4. Reversible O redox by layered/spinel phase complex. 3D rendering (a) and the corresponding 2D slice views (b) of Mn valence
state distribution for LS-LMO samples at the OCV state, on charging to 4.5 and 4.9 V, and on discharging to 2 and 1.3 V by the TXM
technique. (c) Mn valence states deduced from TXM results in (a) marked in the capacity−voltage profile. (d) Schematic diagram of the
density of states of Mn and O. (e) Histogram showing the contribution of Mn redox and O redox to the capacity during the first charge (1st-
C), first discharge (1st-D), second charge (2nd-C) and thenth charge (10th-D), deduced from the TXM results in (a).
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cycles (marked by the orange dashed ellipses in Figure 5d,e),
which likely originate from oxygen gas evolution and oxygen
vacancy condensation.51 In contrast, the layered nanodomains
marked by yellow rectangles and the spinel nanodomains
marked by blue rectangles were continually observed after the
1st, 10th, and 50th cycles (Figure 5f−h and Figure S11a), even
after the 100th cycle (Figure S11b). It indicates the great
structure stability of such a nanoscale complex structure, which
should be related to the inhibited lattice O loss demonstrated
by in situ DEMS and responsible for the excellent cycling
stability.
The spinel-like phase unavoidably forms during the structure

degradation of Li2MnO3.
52 To distinguish the spinel phase in

LS-LMO and the spinel-like phase in cycled Li2MnO3, the O
K-edge and Mn L-edge EELS spectra of pristine LS-LMO, LS-
LMO and Li2MnO3 after the first cycle were collected (Figure
S12). The prepeak of the O K-edge, highlighted by a dashed
line, is related to the transition of the O 1s core state to the
unoccupied O 2p states that are hybridized with TM 3d
states.53 It can be found that LS-LMO samples before cycling
and after the first cycle exhibit an obvious prepeak signal, in
contrast to the almost absent prepeak in Li2MnO3 after the first
cycle. The Mn L-edge of the cycled Li2MnO3 shifts to lower
energy, indicating a lower valence state of Mn compared with

LS-LMO samples. These indicate that the spinel-like structure
formed in the cycled Li2MnO3 may contain more oxygen
vacancies and be close to an Mn3O4-type spinel with a lower
Mn valence, which could not hinder further O loss and would
accelerate the structure degradation. Furthermore, ex situ
Raman spectra were acquired on Li2MnO3 and LS-LMO
before cycling and after the 1st and 50th cycles. As shown in
Figure S13a, two broad bands at ∼484 and ∼604 cm−1 can be
attributed to the Eg and A1g vibrations of the Raman-active
layered structure. The band at ∼426 cm−1 is considered to be
the fingerprint vibration of Li2MnO3. Besides, a shoulder band
at ∼650 cm−1 (marked by green arrows) appears in Li2MnO3
after the first cycle, which is assigned to the newly formed
spinel-like structure.54,55 The dramatic increase of the shoulder
peak after 50 cycles indicates that Li2MnO3 almost totally
transforms to a spinel-like phase. For LS-LMO, the shoulder
peak shows much fewer changes with cycling, confirming that
the layered-spinel hybrid structure can be greatly retained
(Figure S13b).
In summary, we demonstrated the phase complex engineer-

ing in constructing a new high-performance Li−Mn−O
cathode for Li-ion batteries, featuring the layered-spinel
complex structure coherently at the nanoscale. The introduced
spinel nanodomains greatly inhibit the mobility of oxygen

Figure 5. Structural stability of LS-LMO upon cycling. In situ DEMS during the first two cycles of Li2MnO3 (a) and LS-LMO (b). HRTEM
images of Li2MnO3 after the 1st (c), 10th (d), and 50th (e) cycles. HRTEM images of LS-LMO after the 1st (f), 10th (g), and 50th (h)
cycles.
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vacancies in the layered nanodomains at high potentials,
allowing the LS-LMO cathode to achieve excellent long-term
cycling with an ultrahigh initial capacity of >440 mA h g−1 and
negligible voltage decay. Our findings show a new class of low-
cost and high-performance Li−Mn−O complex cathodes for
next-generation Li-ion batteries and verify the potential of the
multiphase complex strategy in developing high-performance
cathode materials.
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