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batteries, lithium metal anode could be an 
essential part of the next-generation bat-
teries by offering both the lowest electro-
chemical potential and a high capacity.[1,6,7] 
However, problems including dendrite 
growth and significant volume change 
during cycling severely jeopardize the 
applications of lithium metal anodes.[6–9] 
Under actual working conditions, the 
growth of lithium dendrites on the anode 
will significantly reduce the battery's Cou-
lombic efficiency, energy density, and sta-
bility. After the dendrite grows to a certain 
length, it can pierce the separator and 
touch the cathode, resulting in a short 
circuit and possible serious accidents like 
fires.

With the development of experimental 
technology, the specific morphology and 
phase structure of lithium dendrites can 
now be directly observed by the trans-
mission electron microscopy (TEM).[10–12] 
However, due to the resolution limit of 
existing observation methods, the kinetic 

process of dendritic morphology evolution is still unclear. 
Existing simulation studies on lithium dendrites are usually car-
ried out using methods based on phase field[13,14] and empirical 
force fields.[15,16] The low accuracy of these methods makes it 
difficult to predict the actual morphological characteristics of 
the dendrites. Atomic-level accuracy is needed for large-scale 
morphology simulations. The application of machine learning 
techniques based on quantum chemical calculations provides 
an approach that combines precision and speed.[17–19] Machine 
learning force field (ML-FF) models trained on high-accuracy 
datasets of small systems have been shown to have the poten-
tial to scale to mesoscopic and even macroscopic scales in alkali 
metals[20–24] and other materials.[25–30] Furthermore, the data-
driven construction of the machine learning based potential 
energy surface (PES) allows us to use multiple density functional 
theory (DFT) data sets, including the one for lithium atoms in 
the implicit electrolyte environment.[31] This allows us to simu-
late the lithium dendrite evolution in a realistic environment.

Based on the implicit solvent model, we investigate the 
morphology evolution of lithium dendrites in the electrolyte 
environment by ML-FF-based molecular dynamics (MLFF-
MD) simulation. During the simulation, we observed slipping 

Solving the dendrite growth problem is critical for the development of lithium 
metal anode for high-capacity batteries. In this work, a machine learning 
force field model in combination with a self-consistent continuum solvation 
model is used to simulate the morphology evolution of dendrites in a working 
electrolyte environment. The dynamic evolution of the dendrite morphology 
can be described in two stages. In the first stage, the energy reduction of the 
surface atoms induces localized reorientation of the originally single-crystal 
dendrite and the formation of multiple domains. In the second stage, the 
energy reduction of internal atoms drives the migration of grain boundaries 
and the slipping of crystal domains. The results indicate that the formation of 
multiple domains might help to stabilize the dendrite, as a higher temperature 
trajectory in a single crystal dendrite without domains shows a higher dendrite 
collapsing rate. Several possible modes of morphological evolutions are also 
investigated, including surface diffusion of adatoms and configuration twists 
from [100] exposed surfaces to [110] exposed surfaces. In summary, reducing 
the surface and grain boundary energy drives the morphology evolution. 
Based on the analysis of these driving forces, some guidelines are suggested 
for designing a more stable lithium metal anode.
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1. Introduction

Lithium-ion batteries are widely used in electric vehicles and 
large-scale energy storage systems due to their high energy 
densities.[1–5] To further increase the specific energy density of 
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between internal crystal domains, followed by the formation of 
grain boundaries, which resulted in kinks in the overall shape. 
MLFF-MD result shows a rearrangement trend toward coherent 
alignment of the grain boundaries, eventually forming a single 
crystal. The morphology evolution consists of two stages, 
driven by the changes of the energy at the surface and in the 
bulk, respectively. The surface energy reduction drives the first 
stage of morphology change, signifying an internal crystal 
reorientation and the formation of grain boundaries. In the 
second stage, crystal domains slip along the grain boundary, 
and the rearrangement of atoms at the grain boundary reduces 
the bulk atomic energy. The rearranged grain boundaries show 
good coherence. Through kinetic simulations at different tem-
peratures, we noticed that dendrites tend to collapse rapidly at 
a high temperature without forming crystal domains and grain 
boundaries. The lack of pinning caused by the grain boundaries 
results in rapid diffusion of lithium atoms across the surface, 
preventing the continued growth of dendrite. By constructing 
initial cuboid dendrite structures with different exposed sur-
faces, we further investigate the effect of the surface orienta-
tion. The result suggests that the exposed surface tends to 
change from the high-energy [100] planes to the low-energy 
[110] planes, causing twists of different domains, and the for-
mation of the grain boundaries. During the simulation, we also 
observed adatom diffusion along the structure surface, and the 
surface morphology significantly influences the dynamics of 
the entire dendrite morphology change.

In general, surface energy is the initial driving force of the 
entire morphology evolution. All changes, including the kink 
formation caused by the sliding between multiple domains, 
and dendrite broadening along a specific direction (e.g., <110> 
direction), are to lower the surface energy. However, different 
initial surface energies show different effects on the mor-
phology change. These observations indicate that modifying the 
surface energies (e.g., by using different electrolytes) can have a 
major impact on the dendrite morphology change, which is in 
agreement with recent experimental observations.[32]

Due to the difficulty of verifying large-scale system data 
directly with DFT calculations, we propose a procedure of 
active learning and verification strategies based on cutting off a 
small system from the large system and energy decomposition 
method. With our vector–vector (VV) fitting method, the active 
learning strategy demonstrates a high general performance and 
iteration efficiency. This general procedure can be applied to 
the studies of other large-scale dynamics phenomena.

2. Results and Discussion

2.1. Model Building for the Lithium Dendrite

Various growth patterns of dendrites have been experimen-
tally observed. Among them, needle-like dendrites growing 
along an 1D direction up to tens of micrometers are commonly 
observed.[9] In constructing the data set and studying the mor-
phology change of lithium dendrite, we mainly focused on this 
type of needle-like dendrite pattern. Under the framework of 
existing machine learning force field methods, a pre-calculated 
data set based on the DFT method is necessary. To provide 

sufficient sampling information, we constructed a class of ini-
tial configurations as scaled-down models of the needle-like 
dendrite, as shown in Figure  1a. For the electrolyte, we chose 
a standard mixed organic electrolyte system, PC-DME, as the 
growth of lithium dendrites is a common problem in such 
mixed organic electrolytes. The effects of electrolytes, however, 
are modeled implicitly with dielectric constants of the elec-
trolyte as input. Detailed training data set and solvent model 
parameters are described in the Experimental Section and Sup-
porting Information.

A commonly recognized problem for the construction of 
ML-FF models is the requirement of enormous initial DFT 
data generation, usually long-time ab initio molecular dynamics 
(AIMD) results. The researchers have proposed various solu-
tions for the pre-training model[33,34] and initial configura-
tion screening to overcome this problem.[35–37] Another idea 
is to obtain the atomic energy by decomposing the DFT total 
energy,[29] which significantly expands the dataset's size. Such 
atomic energy is essential when the system is heterogeneous, 
containing multiple local environments. The labels of atomic 
energy can help the model directly construct a descriptor-
atomic energy relationship, as shown in Figure  1b. To intui-
tively understand the inference relationship between descrip-
tors and atomic energies, we project the features of a 230 atoms 
bcc phase dendrite configuration, and reduce them into a 2D 
plane for visual analysis of different atomic environments. As 
shown in Figure  1c, different atomic environments aggregate 
into different clusters in the 2D space, and the atomic energy 
obtained by energy decomposition is directly related to these 
atomic environments. The traditional DFT calculation method 
cannot directly get the atomic energy, so the ML-FF model has 
to use total energy as a bridge to infer the relationship between 
the features and the atomic energies. Without direct refer-
ence data, it is difficult to ensure that the correct relationship 
between atomic environment and atomic energy can be learned 
quickly. In our ML-FF training process, we have used total 
energy, atomic energy, and atomic force as the training labels.

2.2. Active Learning for the Large-Scale Simulation

Transferability is a common problem both in the potential 
energy surface and machine learning models, while it is crucial 
for cross-scale morphology simulations, due to the existence 
of different local geometries. A comparison of feature space is 
shown in Figure S5 (Supporting Information), and large-scale 
structure exhibits a wide distribution of geometric features. In 
order to ensure the transferability of machine learning models, 
an active learning strategy through active sampling and con-
tinuous iterative learning is commonly used.[38–40] However, 
existing sampling strategies do not deal with the issue of cross-
scale local geometric changes. We propose an active learning 
scheme for large-scale structures, as shown in Figure 2. This 
scheme consists of three steps: sampling, labeling, and training. 
The most critical part of this scheme is how to sample large-
scale structures. In this work, we focused on local configura-
tions that change significantly during MLFF-MD simulation. As 
shown in Figure 2b, the columnar dendrite in the configuration 
exhibits a distinct tilting phenomenon during the MLFF-MD 
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process, accompanied by significant morphology changes at the 
bottom and top. To cover the feature space in the large-scale 
structure, we extracted such unique parts of the configuration 
by cutting out small systems from the large-scale structure, and 
using DFT calculations to generate data for these cut-out small 

systems. The efficiency of the sampling techniques is discussed 
in the Supporting Information. The small local systems were 
calculated as labeling and concatenated with the initial data, fol-
lowed by retraining of the ML-FF model. This forms an active 
learning loop, as shown in Figure  2c. After such a loop, we 

Figure 1.  Schematic diagram of dataset configuration and model, and analysis of structural features. a) Configuration used in the small-scale dendrite 
data set. b) Architecture of ML-FF Models. The local environment in Rcut corresponding to different atom i is described by symmetry function values 
G. For various local environments of columnar dendrite morphology, different symmetry function values determine the atomic energy. c) Sectional 
view of bcc phase configuration and a 2D feature plane obtained by projection. According to the Euclidean distance between features in the 2D feature 
space, the features can be classified into three categories, corresponding to the surface (red region), subsurface (green region), and bulk phase (purple 
region) in the configuration. The projection exhibits an intrinsic correlation between the symmetry functions distribution and the atomic energy, which 
shows an increasing trend from the bulk to the surface corresponding to the direction of the arrow.

Figure 2.  Schematic of active learning method for cross-scale simulation. a) Schematic of data sampling to expand the range of models from active 
learning. b) Sampling the critical parts of changes during MLFF-MD by cutting. Throughout the process, MLFF-MD is applied as a feature space sam-
pler. c) Retraining the model using the dataset concatenated with the cutting part, the DFT calculator is used to obtain accurate labels.

Adv. Energy Mater. 2023, 13, 2202892

 16146840, 2023, 4, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/aenm

.202202892 by U
niversity T

ow
n O

f Shenzhen, W
iley O

nline L
ibrary on [20/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



www.advenergymat.dewww.advancedsciencenews.com

© 2022 Wiley-VCH GmbH2202892  (4 of 9)

found that the ML-FF model achieved better prediction results, 
as shown in Figure  S6 (Supporting Information). This results 
in significant better prediction accuracy on key configurations 
with limited DFT data generation. Combined with the subse-
quent model accuracy verification described below, this active 
learning strategy effectively improves the general performance 
for modeling large-scale complex structures. The details of 
the active learning scheme are described in the Supporting 
Information.

2.3. The Morphology Simulation of Lithium Dendrite

2.3.1. The Morphology Change Dynamics of Dendrite

To simulate the changing morphology of needle-like dendrites, 
we first constructed a circular columnar dendrite shape with 
a bcc phase consistent with the experiment and performed 
MLFF-MD simulations. A circular column was used to average 
out the surface orientation dependence, and a low temperature 
of 250  K was first used. Two different characteristics describe 
the overall morphology. The first is the internal crystal structure 
and orientation, as described below, which can change during 
the morphology evolution. The second is the overall shape of 
the dendrite. The entire morphology change process consists of 
two stages. During the first 25 ps, the top part of the structure 
undergoes severe relaxation, rapidly collapses into the fcc and 
hcp phases, and then gradually transforms back into the bcc 
phase but with a different orientation, as shown in Figures S10 
and S11b (Supporting Information). Corresponding to the for-
mation of this new crystal domain at the top of the dendrite, a 

grain boundary is formed between the top and bottom domain, 
as shown in Figure 3c, with the bottom part still in coherence 
with the anode substrate lattice. As shown in Figure  3d, the 
top phase slides downward along the grain boundary in a sub-
sequent stage. The sliding atoms also promote the growth of 
the bottom crystal domain along the <110> direction, making 
it broader in the <110> direction. The whole structure becomes 
stable when the top crystal domain shrinks to a certain extent. 
The stabilized twin grain boundary shows the characteristics 
of a coherent interface with no defects, as shown in Figure 2b, 
in consistent with the experimental results.[10] The MLFF-MD 
simulation shows that the formation of twin boundaries is a 
spontaneous behavior of lithium metal in a solvated environ-
ment. To test the reliability of our results, an accuracy verifi-
cation based on energy decomposition scheme is shown in 
Supporting Information.

We now analyze the driving force for the above morphology 
changes. To find the driving force, we determine the atom coor-
dination number using a bond cutoff distance of 3.45  Å. As 
the dendrite structure shows a significant bcc phase tendency 
in Figure  S10 (Supporting Information), we classify atoms as 
being on the surface if their coordination number is <8, and as 
being in the bulk if the coordination number is >8. The bulk 
atoms can be further divided into atoms inside domains and at 
grain boundaries between domains. The classification strategy 
is validated in Supporting Information. During the initial stage 
from the beginning of the simulation to about 12.5  ps, the 
energy reduction of surface atoms provides the main driving 
force for the morphology change. We observed a reduction 
in surface atomic energy accompanied by an increased coor-
dination number of surface atoms, as shown in Figure  S11a 

Figure 3.  Morphology change of a circular columnar configuration. a) Orientation change of the columnar configuration during the 200 ps MLFF-MD 
simulation. The three configurations that change from the direction of <001> to the direction of <110> represent the initial structure, after 20 and 200 ps 
MLFF-MD simulation. b) Atomic arrangement of the configuration after 100 ps MLFF-MD simulation. A twin boundary can be observed. Schematic of 
c) the first stage and d) the second stage in changing morphology.
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(Supporting Information). This happens while the crystal ori-
entation of the top part of the dendrite is changing. During this 
change, the bottom part of the dendrite keeps lattice coherence 
with the substrate anode. This hence causes the formation of 
a grain boundary between the top and bottom parts. The ini-
tial grain boundary has irregular atomic arrangements at the 
interface with relatively high atomic energies, as shown in 
Figure  S12a (Supporting Information). This however initiates 
a subsequent self-healing process, resulting in the internal 
crystal domains sliding along the grain boundary, as shown in 
Figure  3c and Figure  S11b–d (Supporting Information). This 
sliding is accompanied by a reduction of the atomic energy 
at the grain boundary. After this sliding, the surface atomic 
energy also tends to be stabilized. At this stage, a distinct kink 
characteristic can be observed on the dendrite shape, consistent 
with the experimental observations.

In the later stage, the reduction of the grain boundary and 
surface energy provides the driving forces for the sliding 
between internal crystal domains. The simulation from 
12.5–25  ps showed a decrease in the grain boundary energy 
accompanied by the rearrangement of grain boundary atoms. 
However, after the rearrangement, the atoms at the grain 
boundary still show higher energy. It can be observed that part 
of the atoms shows higher energy as red regions in the cross-
sectional view of the grain boundary, as shown in Figure S12b 
(Supporting Information). Figure  S13a (Supporting Informa-
tion) provides a cross-sectional view of the structure along the 
[110] plane, which shows that the energies of some atoms at 
the grain boundary are significantly higher than their counter 
parts in crystal domains. We assume this is due to the inco-
herent matching at the grain boundary. As the internal crystal 
domains slide, the grain boundary migrates and self-heals 
during the 25–200  ps time period, the grain boundary energy 
further decreases, as shown in Figure S12d (Supporting Infor-
mation), during which the number of high-energy atoms (with 
red marks) reduces. It can be observed from Figure S13b (Sup-
porting Information) that eventually the atoms at the grain 
boundary show coherent matching, the grain boundary tends 
to be stable, and the grain boundary atomic energy after stabi-
lization is similar to that in the single crystal domain. During 
the morphology change, the internal energy of the domains 
seems to be stable, as shown in Supporting Information. It 
is worth noting that we observed the emergence of new grain 
boundaries during the sliding process. In the simulated process 
of 33.55–41.25 ps, part of the atoms in the top crystal domain 
undergoes orientation transformation again, accompanied by 
forming two new grain boundaries at a certain angle to the 
sliding plane. This is accompanied by a significant decrease in 
the average displacement rate along the XY plane (as shown in 
Figure  S11a, Supporting Information), which is probably due 
to the new grain boundaries' hindering or say pinning effect 
along the sliding direction. As shown in Figure  S11f (Sup-
porting Information), the top grain boundary moved along the 
sliding direction during the 41.25–50 ps simulations. The new 
phase rapidly shrank, the top part of the configuration reverted 
to its original orientation, and the pinning effect was released, 
as shown in Figure S11g (Supporting Information).

The temperature effect has received extensive attention due 
to its significant influence on dendrite growth. Previous works 

have mainly analyzed the inhibitory effect of temperature from 
the perspective of charge and ion transport, and the reaction 
of the solid electrolyte interface (SEI) layer formation.[41] The 
phenomenon of sliding along grain boundaries in dendritic 
morphology provides a new angle to observe the influence of 
temperature. As studied above, at the lower temperature, we 
can observe prominent grain boundary formation and sliding 
during the change of dendrite morphology. On the other 
hand, for the same initial structure, the morphology collapses 
rapidly into a hemispherical convex hull at a higher tempera-
ture of 350  K, and no grain boundary formation is observed 
throughout the collapse. Note that internally the atoms are 
still in the bcc structure, and there is no multi-crystal domain. 
Thus, in the absence of the barrier for grain boundary sliding, 
dendrites tend to collapse rapidly along the morphology axis, 
exhibiting a faster rate of structural change in all configura-
tions than at lower temperatures, as shown in Figure S16 (Sup-
porting Information).

In another simulation, we tested the adsorption mecha-
nism of adatoms by the dendritic morphology. To avoid the 
morphology change of the smaller dendritic configuration 
obscuring the observation of adatoms, we constructed a larger 
circular columnar dendritic structure. At a temperature of 
350  K, we observed the same absorption process for adatoms 
on the top and side surfaces of the dendrites, as shown in 
Figure  S17 (Supporting Information). The adatoms diffuse 
along the surface, and the dendritic configuration exhibits suf-
ficient stability without regrowth along the adatom direction.

2.3.2. The Effect of Different Exposed Surfaces

We next further tested the effect of different exposed crystal 
surfaces on the morphology change. Two initial cuboid den-
drite configurations were constructed by exposing the [100] sur-
face and the [110] surface as the side surfaces, corresponding 
to configurations A and B, respectively. More complicated mor-
phology changes happen compared with the circular column 
cases. First, similar to the circular column case, a top domain 
is formed with a different orientation. Interestingly, in both 
configurations A and B, the top domains have an [110] outside 
surface shape after 40 ps MLFF-MD simulation. As a result, for 
configuration A, as the top domain grows, we observed a torsion 
process of the orientation rotation from the original [100] cubic 
to [110] cubic (as shown in Figure 4a). For configuration B, we 
did not observe torsion, and the structure slips along the <110> 
direction, consistent with the circular columnar case described 
above, as shown in Figure  4b. During this rotation process, 
configuration A exhibits a continuous increase in the surface 
average coordination number accompanied by a decrease in the 
surface atomic energy. In contrast, configuration B shows a con-
tinuous decrease in the surface average coordination number, 
but it eventually converges to the same surface average coordi-
nation number as configuration A. As configuration B changes, 
the energy of the surface atoms tends to remain unchanged, 
as shown in Figure  4c. Internally, the cuboid configurations 
exhibit more phase (crystal orientation) transitions during the 
entire trajectory process than the circular columnar configura-
tions. Besides top and bottom domains, there are also multiple 
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intermediate domains. They exhibit frequent sliding in the x 
and y directions, manifested as slope changes in mean displace-
ment, as shown in Figure S14a (Supporting Information). The 
two configurations exhibit similar final surface atomic situ-
ations but different morphology changes. In the z-direction, 
the two cases show similar degrees of collapse, but configu-
ration A exhibits a smaller displacement in the XY plane, as 
shown in Figure 4d. One possible reason is that the appearance 
of the twist boundary in configuration A provides an impedi-
ment to sliding, which reduces its overall atomic displacement. 
We compared the whole changing process parameters of the 
three configurations (circular column, cuboid configuration A 
and B), including surface energy, bulk energy, surface atomic 
number, and surface atomic coordination number (as shown 
in Figure  S15, Supporting Information). Although the surface 
average coordination numbers have different initial values, they 
tend to converge to the same value at the end, showing that ini-
tial configurations with different surface energies may reach a 
common thermodynamic stable state. Also, interestingly, the 
surface energy can initially decrease, then increase a little bit 
accompanied by a decrease of the internal atomic energy. This 
suggests that the surface energy is the initial driving force for 

the small needle-like dendrite morphology change, followed by 
the healing of the internal grain boundary atomic arrangement 
(which could be accompanied by a small increase of the sur-
face energy). This picture seems to apply to different dendrite 
shapes.

3. Conclusion

We constructed a set of ML-FF models incorporating the con-
tinuum solvation model and applied the ML-FF models to the 
dynamics of lithium dendrite morphology changes. By decom-
posing the DFT total energy into each atom, we improved the 
inference ability of the model through an end-to-end data-driven 
method, and developed a set of active learning and model verifi-
cation schemes for large-scale morphology simulation based on 
this energy decomposition scheme. In the DFT calculations, we 
used the implicit solvent model to represent the solvation effects. 
These schemes enabled us to observe in situ dynamic mor-
phology change of lithium dendrites at an atomic level. We drew 
the following conclusions in regard to the morphology change 
with an initial needle-like dendrite structure: 1) A kink-like  

Figure 4.  Morphologies changes of cuboid configurations with different exposed surfaces. Top view of cuboid configuration with a) [100] exposed plane 
and b) [110] exposed plane. In this figure, the black dotted line marks the top surface shapes of the initial configurations, and thumbnails depicting the 
initial configurations have been displayed. The red dotted line marks the top domain shapes formed after 40 ps MLFF-MD simulation. Note the top 
domain is always with an [110] orientation, and even in configuration B, without a shape rotation, a separated top domain will be formed. c) Statistics 
changes of surface atoms and d) mean displacement of configurations during MLFF-MD simulation.
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overall shape is observed, in agreement with the experimental 
results; 2) The morphology evolution process can be divided 
into two stages; 3) In the first stage, the surface energy is the 
driving force, which induces a formation of a top domain in dif-
ferent crystal phase or orientation to that of the bottom domain, 
thus forming a grain boundary; 4) In the second stage, the top 
domain can slide along the grain boundary, and meanwhile 
heal the initial grain boundary, making it atomically coherent 
at the interface. This eventually leads to the formation of a kink 
shape. For an initial cuboid dendrite, a shape rotation might 
appear due to the formation of a top cubic shape with different 
orientations, and the growth of the top domain. The dynamics 
of different initial morphologies share some common themes:  
a) for both circular column and cubic column dendrites, 
multiple domains can form with complex internal domain 
dynamics; b) in all cases, the first stage is driven by surface 
energy reduction, and the second stage is driven by internal 
energy (mainly grain boundary energy) reduction. For the 
higher temperature case (T  =  350  K), there is no internal 
domain formation. As a result, the whole structure collapses 
into a convex hull quickly, in the meanwhile the internal struc-
ture is still in the bcc crystal phase.

In the process of morphology evolution, we observed three 
energy factors: surface energy, internal domain energy, and 
grain boundary energy. The reductions of surface energy and 
grain boundary energy drive the morphology evolution. For 
clarity, we defined bulk energy as the combination of internal 
domain energy and grain boundary energy. We have the fol-
lowing conclusions about these three types of energy: 1) The 
surface energy is mainly determined by the surface orienta-
tion, coordination number, and surface atom number. The 
high-surface energy of the initial configuration provides the 
initial driving force to kick start the entire morphology evolu-
tion process. One part of the structure tends to change orienta-
tion (domain rotation) to lower the surface energy, leading to 
the generation of different internal domains separated by grain 
boundaries. On the other hand, the dendrite sliding and broad-
ening in a specified direction (e.g., <110> direction) reduces 
the number of surface atoms, which also leads to a decrease 
in surface energy; 2) The internal energy of a single domain 
is roughly unchanged during the morphology change process. 
It is noted that even the internal energies of different domains 
have similar values, the different crystal orientations for the bcc 
structure do not affect the internal domain energy; 3) The grain 
boundary energy is the main reason for the change in the statis-
tical value of bulk energy. The initial incoherence between dif-
ferent domains leads to high grain boundary energy. However, 
with time a self-healing mechanism accompanied by the sliding 
of domains changes the initial incoherence grain boundary to a 
coherence boundary, thus reducing the grain boundary energy.

The appearance of multiple domains and grain boundaries 
were observed in MLFF-MD trajectories of different initial 
configurations at room temperature, which means that this is 
a common characteristic of lithium metal in the solvent envi-
ronment. However, this characteristic might have prevented 
the further collapse of the dendrite, by creating some energy 
barriers due to some interlocking/pinning effects. This can be 
seen from the higher temperature (T = 350 K) case, where there 
is no domain and grain boundary formation, and its collapsing 

rate is much faster. Moreover, the pinning effect can also be 
proved by the decrease in collapse rate after the new domains 
and grain boundaries form. Thus, we hypothesize that the for-
mation of the multiple domains and the grain boundaries actu-
ally helps to stabilize the dendrite, preventing it from quickly 
collapsing into a convex hull. How to prevent such multiple 
domains and grain boundary forming can thus be a strategy to 
prevent the stable dendrite. Constructing glassy lithium (thus 
no multiple domains) to grow into large grains has been proven 
to be one of the solutions to avoid dendrite formation.[42]

This work also demonstrates how the MLFF model can be 
used to study large-scale morphology problems, especially 
using the DFT calculations with energy decomposition method. 
The MLFF-MD simulation with an implicit solvent model 
shows a good match to the experiment, and explains the under-
lying mechanism of the kink phenomenon, which is experi-
mentally observed to occur in a solvation environment. Finally, 
we note that dendrite growth is also related to multiple growth 
stages,[42,43] thermodynamic properties,[43–46] electrode poten-
tial,[44,46] and explicit solvent molecules.[44,47,48] These effects 
will affect the dynamics of morphology change, and might be 
needed to represent some other in situ phenomena, such as the 
generation of the SEI layer.[47] We plan to further consider these 
effects by re-training the model with relevant data, such as the 
AIMD results calculated by the grand canonical fixed potential 
method or with explicit solvent molecules. A fixed potential 
method[49] has been implemented in the PWmat code, the DFT 
calculator, we used in this work, will allow us to apply the above 
training strategy to the computational data generated under the 
fixed potential method.

4. Experimental Section
DFT Calculations: The ab initio molecular dynamics (AIMD) and self-

consistent field (SCF) results were performed via PWmat code,[50,51] 
which is a plane wave pseudopotential package based on DFT and 
accelerated by graphics processing unit (GPU) architecture. The 
Perdew–Burke–Ernzerhof (PBE)[52] generalized gradient approximation 
(GGA) functional and NCPP-SG15-PBE pseudopotential[53,54] were 
used. The electron wave functions were expanded by plane waves with 
cutoff energies of 60 Ryd. The convergence tolerance for total energy 
and atomic force during the AIMD calculation was set to 10−10  eV and 
0.02 eV Å−1. In all the AIMD for ML-FF training, the Brillouin zone was 
sampled by a k-point grid with 2 × 2 × 2 points for a typical 100 atom 
supercell. The atomic energy decomposition algorithm was implemented 
in the PWmat code as reported in Ref. [55].

Molecular Dynamics Simulations: The NVT ensemble with the 
Berendsen dynamics was used in all molecular dynamics simulations. 
A time step of 2  fs was used in all the simulations. All visualizations 
of the molecular dynamics trajectory were performed with the OVITO 
program,[56] and the a-CNA method[57] was used to identify the phase 
composition change.

Implicit Solvent Model: The implicit solvent model was used during the 
AIMD calculations via PWmat code, which followed the work of the self-
consistent continuum solvation model.[31] The dielectric constant and surface 
tension was set as 35.5 and 32.5 dyn cm−1 referring to the experiment,[58,59] 
and the sum of neutral atomic charge density was set to control the dielectric 
function profile. The linearized Poisson–Boltzmann equation was used 
for the implicit solvent model, and the inverse deby length square in the 
linearized Poisson–Boltzmann equation was set to 0.081/Bohr2.

Training and Testing Models: The feature proposed by Huang et al.[29] 
was used as the input for the models, and a nonlinear fitting model  
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VV was used for fitting the model (see Supporting Information for more 
detail). The PWmat-MLFF package was used for training ML-FF models, 
which has been released at github.com/LonxunQuantum/MLFF. In 
order to verify the generalization performance of the model in large-scale 
configurations, a sampling strategy based on energy decomposition  
is used, and the detail has been shown in the Supporting Information.  
All feature projection analyses were performed using the t-SNE 
method.[60]

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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